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ABSTRACT
Animation helps viewers follow transitions in data graphics. When
authoring animations that incorporate data, designers must care-
fully coordinate the behaviors of visual objects such as entering,
exiting, merging and splitting, and specify the temporal rhythms
of transition through staging and staggering. We present Data An-
imator, a system for authoring animated data graphics without
programming. Data Animator leverages the Data Illustrator frame-
work to analyze andmatch objects between two static visualizations,
and generates automated transitions by default. Designers have
the flexibility to interpret and adjust the matching results through
a visual interface. Data Animator also supports the division of a
complex animation into stages through hierarchical keyframes, and
uses data attributes to stagger the start time and vary the speed
of animating objects through a novel timeline interface. We vali-
date Data Animator’s expressiveness via a gallery of examples, and
evaluate its usability in a re-creation study with designers.
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1 INTRODUCTION
Animated data graphics are an increasingly popular medium for
data-driven narratives on media outlets and digital publications
such as The New York Times1 and The Pudding2. These digital
narratives present visualizations of data to help communicate in-
formation to the viewer. An increasing number include animated

1http://www.nytimes.com/
2https://pudding.cool/
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transitions between the visualizations. Although animation is not
always beneficial for analytic tasks [12, 51], carefully designed ani-
mation of charts can facilitate detection of objects entering into a
scene [7], enhance understanding and engagement through staged
transitions [31, 38], and help track changes in data [20, 29].

Designing effective animated data graphics often requires thought-
ful considerations on how to coordinate the behavior of visual objects
and pace the temporal rhythms. For example, animated transitions
can be localized in a specific component (e.g., an axis changes from
linear to logarithmic scale), or happen between two completely
different visual states (e.g., changing from a scatter plot to a stacked
bar chart). In the former case, displacing the axis ticks and labels
and updating the objects’ positions might be sufficient; in the latter
case with more drastic changes, designers need to decide which
visual objects should enter or exit the scene, and which objects
need to be merged, transformed or split.

In addition to coordinating the behavior of visual objects, the
temporal pacing of animation also requires deliberation. Staging
and staggering are two commonly used techniques to pace animated
transition. Staging divides a complex animation into a sequence
of simpler sub-transitions called stages. Staggering applies an in-
cremental offset to the starting time of each moving object, thus
avoiding the confusion caused by all the objects moving simultane-
ously. These techniques may be manually designed but are often
driven by data. For example, staging may be performed based on
the data hierarchy, while the parents animate first, and the chil-
dren later [29]; the trigger time and the speed at which each shape
animate can be specified as a function of data values in an attribute.

Existing animation authoring tools, however, lack support for
coordinating visual objects and specifying data-driven temporal
pacing. Prevalent authoring paradigms for animated graphics in-
clude [57]:

• keyframe animation: specify properties of graphical objects
at certain points of time by setting a set of keyframes, frames
in between two keyframes are generated by tweening.

• procedural animation: generate animation of large number
of animated objects with a set of behavior parameters.

• presets & templates: apply predefined animation effects and
configurations to objects.

Through our previous ideation study [57], we found that design-
ers have an overall preference for keyframe animation. Under this
paradigm, to perform visual object coordination, it is necessary to
track and manipulate objects across different visual states or frames.
It is easy to do so in traditional keyframing tools such as Adobe
After Effects for animated graphics, where the number of objects
is typically small. Animated data graphics, however, often contain
hundreds or more visual objects, so analyzing and tracking the ob-
jects become a challenge. Selectively applying different behaviors
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to different groups of objects for coordination is also non-trivial. In
order to specify and control temporal rhythms, designers need to
articulate how data attributes may drive the staggering of objects
or map to the speed of transition. No existing keyframing tools
support these tasks with ease and precision. A few template-based
tools provide predetermined temporal designs, but the range of
expressivity is limited.

To date, programming remains the only viable way to create
expressive animated data graphics. For example, D3 [9] leverages
the Document Object Model (DOM) for interaction and graphics
rendering, and provides the enter, update, exit paradigm to manage
the differences between current and next visual state of a data
graphic. D3 also provides a transition management module for
interpolating any objects’ properties en masse, while supporting
coordination of temporal aspects of animation (e.g., delay, duration,
easing). However, programming takes significant time to learn,
write, and preview designs. Designers often favor familiar design
tools for animation and prototyping that provide expressivity and
rapid feedback.

In this paper, we propose Data Animator, a system for author-
ing animated data graphics without programming. Our approach
is rooted in the keyframe authoring paradigm and incorporates
elements from the procedural and presets & templates paradigms
when necessary. Animated transitions are specified between static
data graphics – called vis boards. Data Animator adopts a dual
view design (Storyboard and Timeline views) that lets users switch
between levels of authoring granularity.

In order to support visual object coordination and data-driven
temporal pacing, the system needs to understand the structure
and properties of static visualizations. To this end, we build Data
Animator on top of the Data Illustrator framework [42], which
describes the visual properties, data bindings and organizational
structure of objects in a static visualization.

To facilitate coordinating visual objects, Data Animator uses a
matching algorithm to analyze the relationships between objects
across vis boards. Animation is created by tweening the matched
objects and applying animation effects (e.g., “Fade In”, “Fade Out”)
to the unmatched entering or exiting objects. This approach sup-
ports rapid generation of animations through automation. Since
automated matching may fail in certain cases, Data Animator pro-
vides a novel user interface for designers to visualize and interpret
the results of the matching algorithm, and to override defaults and
manually adjust transitions.

To support the authoring of data-driven temporal pacing, Data
Animator supports staggering by data where the value of a data
attribute determines the delay of the animating objects. We also
introduce a concept called hierarchical keyframes, where the al-
located duration for a transition cascades as a linear function of
the parents’ duration. Hierarchical keyframes allow the creation of
expressive pacing by combining staging, staggering and grouping
of graphical objects. We present multiple scenarios to illustrate this
concept and discuss the design of a novel interface for specifying
and visualizing hierarchical keyframes.

Finally, we demonstrate the Data Animator system’s expressive
capabilities via a gallery of examples and evaluate its usability
from a re-creation study with 8 designers. All the participants
could complete each of the six animation re-creation tasks within

a few minutes. Users found Data Animator useful for supporting
the daunting task of coordinating numerous objects and provided
feedback on how to improve the system interface further.

2 RELATEDWORK
2.1 Effects of Animation on Data Graphics
The proliferation of animation in data narratives hints to anima-
tion’s benefits for communicating data. It seems a reasonable as-
sumption that if a static visualization can help viewers understand
data then a moving visualization should be even better [23]. But
what specifically about animation helps to benefit data graphics?
Where is the line drawn between animation that clarifies and en-
riches versus that which obfuscates and distracts? We seek to sup-
port designers in creating rich, compelling, and clear animations
rather than animating for animation’s sake. To that end, we sum-
marize the current body of knowledge on the advantages and dis-
advantages of animation for data graphics.

Recent research empirically explores pacing techniques for visu-
alization. Previous findings from Heer and Robertson demonstrate
the efficacy of staging animations to help viewers track objects and
estimate changing values [31]. Fisher’s synopsis provides further
support for staging as a logical approach to assist viewers in under-
standing the intermediate steps of complex transitions [23]. More
recently staging has been shown to improve subjects’ accuracy to
comprehend transitions that aggregate data [38] and changes to
dynamic networks [16].

In contrast to positive benefits for staging, Chevalier et al. cast
doubt on the effectiveness of staggering. They provide evidence that
staggering has a negligible, or even negative, impact on multiple
object tracking tasks [15]. This could be a result of a loss of common
fate (i.e., when objects move at the same velocity along parallel
trajectories) as each object moves after the other object stops.

Chalbi et al. reveal that graphical perception is improved by com-
mon fate. This evidence indicates that staggering with an overlap
could mitigate the common fate loss as animations are grouped
rather than animate in isolation. Related data storytelling tools sup-
port staggering as it is believed to prevent occlusion and crowding
in cases of structured data and certain motion paths [5, 11]. How-
ever, further evidence is needed to prove the benefits of staggering.

Trajectory bundling is a related method to group similar anima-
tions together and remove occlusion – evidence shows that this
method is particularly effective when tracking multiple targets [20].
Wang et al. introduce a vector field design approach to non-linear
trajectories in animated transitions that avoids scatter plot crowd-
ing [61]. Our approach implements linear trajectories for animated
transitions, future improvements should consider these more ad-
vanced forms of interpolation. When considering which easing
function to use, Dragicevic et al. determined that slow-in/slow-out
typically outperforms other functions for point clouds yet more
research is needed for other visualization types [19].

Additional findings from empirical research and systems re-
search have produced guidelines for when and how to use ani-
mation for visualization. Tverskey et al. use the congruence and
apprehension principles as guidance for assessing whether or not
animation can facilitate similar comprehension and communication
as static graphic representations [59]. They conclude that animation
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provides no benefit for communicating complex systems. However,
they make an exception for animated transitions in cases where the
transition can be “accurately perceived and appropriately conceived”
by viewers. Heer and Robertson build upon the congruence and
apprehension principles with actionable guidelines for animation
in statistical data graphics [31]. Their guidelines include: “maintain
valid data graphics during transitions”, “group similar transitions”,
“minimize occlusion”, “use simple transitions”, and “use staging for
complex transitions.” Informed by the design and implementation
of a timeline storytelling tool, Brehmer et al. propose guidelines for
animated transitions between timelines of varying representation,
scale, and layout [11]. They encourage the use of staging in cases
of highly salient changes, staggering of object groups during trans-
lation and scaling transitions, and simple transitions that involve
at most one dimension change at a time.

2.2 Visualization Grammars and Toolkits for
Animation

Programming toolkits and visualization grammars have led the
way in animation for visualization. Imperative programming toolk-
its [14, 47] update graphics in a stepwise manner on each frame
update. Our approach is more closely related to declarative pro-
gramming approach in which graphics animate between declared
visual states without worrying about the minutia of drawing each
frame. Declarative grammars provide further abstraction from the
low-level details needed to create interactive visualizations [54, 55].
Similar to how the graphics rendering of Data Animator lever-
ages the GPU for performance, Ren et al. also provide access to
GPU-enhanced rendering in a familiar declarative programming
library for producing visualizations [50]. gganimate [41], an ex-
tension of ggplot2 [62], builds on a foundation grammar [63] with
its own “animation grammar” that tweens different components
of the data to graphic pipeline (e.g., data, aesthetic mappings, co-
ordinate systems). This approach focuses on animating a single,
isolated data graphic, rather than creating animated transitions
between two visualizations. More recently, Tong et al. introduced a
high-level domain-specific language (DSL) that enables declarative
specifications of chart animations by leveraging data-enriched SVG
charts [24]. The Canis language supports applying animation effects
and temporal functions to selected marks or groups of marks. How-
ever, programmers must rely on carefully formatting data-enriched
SVG files in order to coordinate matching objects between each file.
Kim and Heer [39] introduce a declarative grammar for specifying
transition steps and build a recommender to assist designers. One of
our goals is to help designers define transition steps and additional
pacing methods through a graphical user interface, and automated
recommendation of animation design is not within the scope of our
work.

D3 [9] is ubiquitously used to create animated data narratives by
data journalists, bloggers, and designers. Leveraging the Document
Object Model (DOM) for interaction and graphics rendering, D3

provides a flexible approach for programming visually diverse data
presentations. D3’s “transition” module animates selected DOM el-
ements from their initial visual properties to newly declared visual
properties. Beyond animated transitions, D3 also offers modules
that assist in state-based animations that are typically reserved

for imperative programming languages (e.g., force-directed simula-
tions). This broad range of animation would not be possible without
D3’s enter, update, exit paradigm tomanage the differences between
current and next visual state of a data graphic. We model our ap-
proach for matching objects between visualizations after the enter,
update, exit paradigm. In addition, D3 supports pacing selected
elements with declarative functions to vary delay, duration, and
easing based on data. However, D3 still poses a challenge to design-
ers, as they must write textual code instead of designing visually.
Writing, compiling, and re-running textual code is time-consuming
and difficult to learn for animation designers. This workflow con-
trasts sharply with how designers typically preview animations in
design tools with full playback functionality. Designers often favor
familiar design tools for animation that provide design freedom,
direct manipulation, and rapid feedback.

2.3 Template-based Authoring Systems for
Animated Data Graphics

When it comes to incorporating animation into data visualiza-
tions, the number of interactive authoring systems are few, far
between and out-paced by the generative capabilities of program-
ming toolkits. All the interactive systems that support animation
are template-based [17, 18, 27, 37]: designers choose a visualiza-
tion from a limited set of designs, and further add or customize
through a dialog interface. In contrast, Data Animator would be
first to introduce animation into a visual builder approach. Amini
et al. introduced DataClips, a template system for creating data
videos by sequencing clips – clips are combinations of visualiza-
tion type × animation type [5]. Unlike Data Animator, DataClips
does not support animated transitions between two visualizations.
The Microsoft platform supports animation by coupling charts and
tables created in Microsoft Excel to the animation effects of Pow-
erPoint [43]. Additional domain-specific tools support animated
transitions between timeline visualizations [10, 11] and node-link
graph layouts [56]; in Data Animator, we try to design and build a
general-purpose animation authoring tool.

Most related to our approach, Flourish Studio allows users to
create animated data narratives by sequencing visualizations in a
slideshow interface [37]. Flourish Studio also supports templated
“data update” animations such as bar chart races, zoomable hierar-
chies, and globe geo-connections. However, these systems trade off
expediency for expressivity, as they help designers quickly create
animated data stories yet restrict designs to a predetermined lexicon.
The template approach addresses the complexities of animated data
graphics by constraining the problem. With limited visualization
types, coordinating behavior of visual objects between a transi-
tion can be pre-programmed; while support for pacing temporal
rhythms is set to inflexible defaults. Our approach seeks to ad-
dress these considerations in a broader design space for expressive
animated data graphics.

2.4 (Non-data) Animation Design Tools
The prevalent authoring paradigms in animation design tools are:
keyframe animation, presets & templates, and procedural anima-
tion [57]. We base our approach on the keyframe animation para-
digm. In keyframe animation properties of objects are declared at
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certain points in time, the differences between a set of keyframes
is tweened to create intermediary frames. Previous interactive sys-
tems adopt presets & templates as they reduce the time and effort
needed to create animations. While our approach is not based on
presets & templates, we selectively introduce templates to hide the
low-level details for complex functions such as data-driven pac-
ing. Finally, our approach does not support procedural animation –
as the imperative model of procedural animation is at odds with
the declarative structure of keyframing. While direct manipulation
interfaces have been proven to be effective in animating proce-
dural illustrations [35, 36, 60], they are ill-suited for transitioning
between two visual states and can produce unexpected results.

Our approach aims to augment familiar user interfaces and inter-
actions from existing animation design tools. The timeline editor
is common in keyframe animation interfaces such as Adobe After
Effects [2], Invision [33] and TumultHype [58]. Keyframes’ tem-
poral positions are directly manipulated through click-and-drag
interactions. Timelines are often tightly coupled with composi-
tion previews that allow scrubbing the playhead of the timeline to
rapidly inspect animations. Our approach augments the traditional
timeline editor for manipulating the keyframes for groups and hier-
archies of objects to support data-driven pacing and relates to the
Repeater [34] and Blend [44] plugins for Adobe After Effects which
provide mechanisms to generate shapes and control timing en mass.
Prototyping tools such as Adobe Xd [3] and Figma [22], and pre-
sentation software such as Keynote [6] and Microsoft Powerpoint
[43] have recently introduced storyboarding as a way to create
keyframes. In storyboarding interfaces, users define transitions be-
tween screens, views, or slides by matching objects between them.
However, these tools lack the ability visualize and disambiguate
object matches between views – we introduce a novel interface
for data-driven matching. Preset animation effects are used in pre-
sentation tools [6, 43] to inject animation into an otherwise static
object, we borrow a handful of these preset effects such as “Fade
Out” and “Fade In.” Presentation tools also forgo timeline interfaces
for ordering the times of groups and objects with “animate after”
or “animate with” conditional statements. Our approach forgoes
conditional timing yet manages to introduce pacing with a hier-
archical approach: keyframes are specified as a percentage of the
available time allotted by parent objects (e.g., groups, collections,
stages, transition).

3 DATA ANIMATOR: DESIGN OBJECTIVES
AND OVERVIEW

In this section, we first introduce design objectives that inform
the conceptual framework and user interfaces of Data Animator.
We then discuss what kind of knowledge an animation authoring
system should assume about static visualizations and describe our
choice of the input graphics format. Finally, we briefly summarize
the Data Animator system and introduce an example data narrative
about urbanization in East Asia [13].

3.1 Design Objectives

The design objectives (DO) target an authoring system for users
with a design background and minimal programming experience.
We derive the following objectives from our prior research on
how designers conceptually approach authoring animated data
graphics [57].
DO1: Focus on keyframe animation yet introduce additional
authoring paradigms when advantageous. Results from [57]
indicate that designers prefer keyframe animation because it is the
paradigm they are most familiar with. The participants also noted
that combining multiple paradigms to strike a balance between
ease of use and control. In Data Animator, we use keyframing as
the primary authoring paradigm, where animating from one data
graphic to another is achieved by treating the source and destination
data graphics as two keyframes and then tweening the differences
between them. We also try to identify scenarios where keyframing
may become tedious, and introduce additional paradigms in these
cases.
DO2: Augment familiar design concepts from existing ani-
mation tools. Similar to DO1, our objective is to leverage con-
cepts from existing graphic, animation, and prototyping tools. This
approach can improve the system’s learnability by re-using con-
cepts and user interfaces that we reasonably assume designers to
be familiar with. When necessary, we augment these concepts to
support data graphics and aim to interweave them within a fluid
authoring experience.
DO3: Promote automated yet flexible matching of objects in
a transition. One of the challenges in animating data graphics is
to specify the matching between objects’ in the source data graphic
and those in the destination data graphic. We aim to design an
automated matching method to reduce the burden on designers.
Since a fully automatic approach may not be perfect, it is also
important to clearly present the matching results to the designers
and provide them the flexibility to fix errors and make adjustments.
DO4: Compose relative timing components to author expres-
sive pacing techniques.Authoringmeaningful animations in data
graphics requires support for pacing techniques such as staging,
staggering, or speed variation. These techniques prescribe that the
triggering and duration of an object’s animation depends on the
animating behavior of another object. For example, staging breaks
down a transition into sub-transitions that start animating after the
previous animation stage ends. These relative timing components
often are determined by the attributes of data bound to the objects,
or the hierarchical relationships between the objects in the visual-
ization. It is our goal to bridge the gulfs of execution and evaluation
[32, 45] in authoring these timing components.

3.2 Assumptions about Static Visualizations
We consider the authoring of static visualizations out of the scope of
this work, because it is a well-studied area withmany tools available
to use [42, 48, 49, 52]. A prerequisite for using Data Animator is
thus to prepare static visualizations that can be used as keyframes.
A variety of formats for static visualizations are available, such as
raster images, scalable vector graphics (SVG), and other proprietary
formats used by different authoring tools. The format of a static
visualization has significant implications on how it needs to be
imported and processed. For example, a raster image contains no
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information about the marks, their properties and data bindings,
and would require sophisticated computer vision techniques to
extract such information.

Since our focus is on authoring animated transitions, we need a
format the describes the following pieces of information about a
static visualization:

• Marks: properties of all the graphical objects in a visualiza-
tion including shape, geometry, and visual styles such as fill
color, stroke width, stroke color, and opacity.

• Hierarchical Organization: in a visualization, marks are
often grouped to form higher-level constructs (e.g., a glyph
may consist of multiple marks [53]; multiple marks may
form a collection (e.g., stacked bar chart). The format should
describe such hierarchical relationships between graphical
objects clearly.

• Peers: given selected a mark or a glyph, we want to find its
peers, which refer to all the other instances that are gener-
ated together with it. For example, in a scatter plot, the peers
of any circle are the other circles representing the same type
of data items. Being able to get the peers of an object is im-
portant because when a visualization consists of multi-class
marks, it is easy to separate these classes.

• Data Scopes: for each graphical object (low-level marks or
high-level constructs) that represents data, the format should
describe what data rows are bound to the object as its data
scope [42, 53].

• Visual Encodings: for each visual property that encodes
data, the format should specify which data attribute is en-
coded.

• Scales andAxes: for each visual encoding, the format should
record the associated scale information, including scale type
(e.g., linear, logarithmic), the domain and the range. Axes or
legends are graphical manifestations of scales. It is desirable
to have their information such as positions on screen, be-
cause we also want to support animated transitions of axes
and legends.

Based on these requirements, we examined a few visualization
formats. The SVG format records information about marks and
sometimes hierarchical organization, but extra efforts are needed
to infer data scopes and visual encodings [30]. The dSVG approach
used in Canis [24] requires users to manually define if two ob-
jects from different static visualization are representing the same
data through the ID and datum tags, but visual encoding or scale
information is not included.

We eventually decided to choose the Data Illustrator framework
[42] and its associated file format as our input visualization speci-
fication. Starting with a mark, Data Illustrator uses the repeat or
partition operators to generate its peer marks and bind data rows
to each mark as its data scope. Repeat and partition can be con-
catenated multiple times to create hierarchical structures. Users
can also bind data attributes to visual properties, and the system
automatically generates scales and axes. Throughout the author-
ing process, Data Illustrator records all the required information
in its static visualization output. For a full description of the Data
Illustrator framework, refer to the original publication [42]. Data
Illustrator uses the JSON file format to represent all the information.

Figure 1: The main interfaces of Data Animator: Storyboard
View (top), Timeline Editor (middle), Object Matcher (bot-
tom).

The supplemental materials contain sample Data Illustrator files
that can be imported as vis boards, and they are using the “.diproj”
extension.

3.3 Overview

Data Animator allows users to create animated data graphics
from sequences of visually diverse data graphics. The tool consists
of three views for authoring animated transitions at different levels
of granularity:

• Storyboard View (Figure 1 - top): Here users import static
visualizations created in Data Illustrator as vis boards, which
are considered as keyframes. Users can sequence the vis
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(g)

(c) (d)

(e) (f)

(h)

(b)(a)

Figure 2: Still frames of featured animated transitions from “Urbanization” example scenario. (a) Symbol map of population
for 2000 transition to population for 2010; (b) Introduce grouped bar chart by economic type to right; (c) Change bar chart to
compare by country; (d) Symbol map transitions to slope chart for population growth from 2000 to 2010; (e) Circles of slope
chart to histogram for % population growth; (f) Exiting histogram to scale in summary bar chart; (g) Rectangles of bar chart
change to circles of dumbbell plot; (h) Introduce y-axis to transition to connected scatter-plot.

boards in a 2D workspace. This design is inspired by sto-
ryboarding, a technique applied in film production and UX
prototyping [3, 8, 22, 33]. Vis boards can be arranged, dupli-
cated, or removed from the project. To create an animated
transition, the user clicks and drags a board’s connector to
then drop on a desired destination vis board. Data Anima-
tor automatically generates a transition based on an object
matching algorithm. All object timings are set to defaults
that can be overridden in the “Timeline Editor”.

• Timeline Editor (Figure 1 - middle): Clicking on any con-
nection between two vis boards in the Storyboard View
will switch to a Timeline Editor, where users can view how
objects across two vis boards are matched through an auto-
mated algorithm. They can also manipulate the timelines to
pace temporal rhythm of animating objects.

• Object Matcher (Figure 1 - bottom): If the matching of vi-
sual objects does not align with users’ expectation, they can
invoke the Object Matcher View through a button and tweak
the automated results of object matching.

In the next two sections, we explain the working mechanisms
of Data Animator in detail. We will use a data narrative about
the urban population growth in East Asia from 2000 to 2010 (re-
ferred to as “Urbanization”) as a running example. We base this
example on the award-winning project by Nadieh Bremer [13]. The

dataset contains 869 rows for each urban city in eastern Asia, with
twelve columns including geographic details (e.g., city, country,
latitude, longitude) and population growth quantities (e.g., 2000
population, 2010 population). The animated data graphics in
this example transition through nine unique visualizations – Fig-
ure 2 features all eight animated transitions. The story deftly moves
from maps of each urban city (Figure 2.a) to introduce auxiliary
bar charts (Figure 2.b-c) to slope charts (Figure 2.d) to histograms
(Figure 2.e) then zooms in to bar charts that compare growth by
country (Figure 2.f), and finally drives home how economic growth
of each country is tied to urbanization with a connected scatter-plot
(Figure 2.g-h). The video illustrating all of these animations is at
http://data-animator.com/gallery/urbanization.html.

Section 4 addresses the challenge of coordinating visual ob-
jects between transitioning data graphics by detailing the object
matching algorithm of the framework. We then describe the Ob-
ject Matcher, a novel interface for users to visualize and manually
disambiguate the matching between two data graphics. Section 5 de-
tails how Data Animator empowers designers to pace the temporal
rhythms of a transition through the Timeline Editor.

4 COORDINATING OBJECTS IN TRANSITION
To generate an animated transition from a source vis board to a
destination vis board, Data Animator needs to know how the objects

http://data-animator.com/gallery/urbanization.html
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Source Destination

ID ...

1 ...

2 ...

... ...

869 ...

City

Ulaanbaatar

Pearl River Delta

...

Jakarta

Country

Mongolia

China

...

Indonesia

ID

1

2

...

869

City

Ulaanbaatar

Pearl River Delta

...

Jakarta

...

...

...

...

...

match

match

match
... ...

Object: 
one-to-one 

869 Circles:
Linked by ID

Data: 
one-to-one 

match

match

match

Figure 3: Example of one-to-one matching from transition
in Figure 2.a.

(e.g., marks, glyphs, collections, axes & legends) in these two vis
boards should map to each other. Even though we have all the
information about graphical objects and data bindings in a single
static visualization, automatically matching the objects across two
vis boards is non-trivial.

In the simplest case, there is a one-to-one mapping between the
objects in the two vis boards. In Figure 3, each circle in the source
vis board (left) matches to an area-encoded circle in the destination
(right) when they have the same data scope, that is, both are bound
to the same data rowswith the same city value and the same country
value. During the animation, the differing visual property values of
matched objects are interpolated to form a transition – for example
in Figure 3 the area of the matched circles change in the animated
transition. The matching applies not only to marks but also other
visual object types such as axes & legends.

There is not always a one-to-one mapping between objects in the
source and destination vis boards, however. Objects can merge or
split between vis boards. For example, in Figure 4, there are two bars
in the source vis board, representing year 2000 and 2010 respectively.
In the destination vis board, we have two superimposed bar charts,
where each row represents a country, and the two bars in each row
represent the two years 2000 and 2010. The data scope of the blue
bar in the source includes all the data rows where the year is 2000.
In the destination vis board, the data scope of each blue bar is a
data row where the year is 2010 for a specific country. The union
of the data scopes of all the blue bars in the destination thus equals
to the data scope of the blue bar in the source. In the animated
transition, it thus makes sense to create a one-to-many matching,
where the blue bar in the source splits into multiple blue bars in
the destination. In such cases where a split or a merge is required, a
preset effect is applied to specify that the aggregated shape repeats
(seen in Figure 4) or partitions to make up the counterpart shapes
in the other vis board.
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Figure 4: Example of one-to-manymatching from transition
in Figure 2.c. The data scope of the blue bar in the source vis
board is the union of the data scopes of all the blue bars in
the destination vis board.

In other cases, some objects in a vis board may simply not have
any matching counterparts in the other vis board. These unmatched
objects need to enter or exit the scene, and they can be animated
based on a preset effect such as “Fade In” or “Fade Out” (the default
presets). Preset effects create a desired animation by supplanting
an object’s property value (e.g., opacity=[0] for “Fade In”).

4.1 Automated Object Matching
To handle these different cases, our overall approach of matching
objects operates at the level of object sets instead of individual
objects, and computes a matching score between two object sets
based on a number of predefined criteria.

Given a source vis board and a destination vis board, we first
group all the objects into object sets for each of the boards. An object
set refers to a set of peer marks, peer groups or peer collections.
For example, in a scatter plot, all the marks form an object set;
in a trellis view of bar charts, at the highest level, we have an
object set of bar charts, within each bar chart, we have an object
set of rectangles. The object sets are identified through the peer
information (represented as class ID) and the hierarchical structures
recorded in a Data Illustrator file. For axes and legends, each axis
or legend is an object set.

After identifying the object sets, we first check the types of
members for every pair of object sets, one from the source vis
board, the other from the destination vis board. By definition, the
members of an object set are peers of each other and have the same
type. For marks, the types can be rectangle, ellipse, path, or text. For
collections, the type is either a repeat grid (members are created
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Table 1: Components of a Matching Score between two object sets 𝑆1 and 𝑆2.

Component Explanation Scoring Function Weight

cardinality the number of members in the object set
𝑎𝑏𝑠 ( |𝑆1 | − |𝑆2 |)
𝑚𝑎𝑥 ( |𝑆1 |, |𝑆2 |

let 𝑆1 and 𝑆2 be two object sets 3

populating
field value the categorical attribute used in repeat or partition

𝑎𝑏𝑠 ( |𝑃 (𝑆1) | − |𝑃 (𝑆2) |)
𝑚𝑖𝑛 ( |𝑃 (𝑆1) |, |𝑃 (𝑆2) |)

let P(S) be the union of all field
values in object set 𝑆

2

data scope data rows bound to each member of the object set
𝑎𝑏𝑠 ( |𝐷 (𝑆1) | − |𝐷 (𝑆2) |)
𝑚𝑖𝑛 ( |𝐷 (𝑆1) |, |𝐷 (𝑆2) |)

let 𝐷 (𝑆) be the data scope of
object set 𝑆

2

shape ID unique identifier assigned to each mark
𝑎𝑏𝑠 ( |𝑈 (𝑆1) | − |𝑈 (𝑆2) |)
𝑚𝑖𝑛 ( |𝑈 (𝑆1) |, |𝑈 (𝑆2) |)

let𝑈 (𝑆) be the union of shape
IDs in object set 𝑆

1.5

class ID identifier assigned to each mark to identify its peers
𝑎𝑏𝑠 ( |𝐶 (𝑆1) | − |𝐶 (𝑆2) |)
𝑚𝑖𝑛 ( |𝐶 (𝑆1) |, |𝐶 (𝑆2) |)

let𝐶 (𝑆) be the union of class
IDs in object set 𝑆

1.5

using Data Illustrator’s repeat operator) or a partition (members
are created using Data Illustrator’s partition operator). For axes, the
type refers to the data attribute type (categorical, quantitative or
temporal). For legends, the type refers to the visual property (e.g.,
size, continuous color, categorical color). If two object sets have
different types of members, we determine that these two object sets
do not match. Otherwise, we proceed to the next step.

For a pair of object sets sharing the same type of members, we
compute a matching score between them. The matching score is
the weighted sum of the following components, summarized in
Table 1.

• cardinality: the number of members in an object set. Two
matching objects need not have the same cardinality. For
example, the destination vis board may remove some marks
in an object set from the source vis board in order to achieve
an animated filtering effect; or a shape may be splitting into
multiple shapes. Instead of using a binary scoring function,
we compute the score of cardinality as the percent difference
between the cardinalities of two object sets.

• populating field value: when an object set is a collection
(i.e., a repeat grid or a partition), Data Illustrator records
which field or data attribute was used to perform the repeat
or partition operation to populate its members. For example,
in Figure 3, the circles in the scatter plot were created by
repeating an initial circle using the ID attribute. Each of
the circles created is assigned a populating field (ID) and
value (an ID value). The matching score for populating field
& value is computed first by doing a union on the field &
values for all the members in an object set, then calculating
the percent difference between the two object sets.

• data scope: as mentioned in Section 3.2, data scope refers
to the data rows bound to a graphical object. For example, in
Figure 3, we have an object set consisting of the circles in the
scatter plot. Each circle in the scatter plot in the source vis
board has a data scope of exactly one row. The data scope of
the object set, then, is the union of the data scopes of all the
circles. The matching score for data scope is computed as
the percent difference between the data scopes of two object
sets.

• shape ID: when the vis board was created, Data Illustra-
tor automatically assigns a unique ID to each shape. These
IDs can accurately reflect how the same Data Illustrator file
evolves over time, if the designer saves different states of the
design as multiple vis boards over the course of authoring.

• class ID: id from Data Illustrator that is used for all peer
shapes, this information helps us know if marks or collec-
tions are a part of same object set. The matching score is
computed in the same way as the shape ID.

The overall matching score between two object sets is theweighted
sum of all the above component scores. Table 1 shows the weights
we assign to each component. These weights are designed based
on the following considerations: cardinality, populating field value
and data scope are three most indicative criteria to determine if two
object sets are representing the same data. They are thus assigned
the most weight. Shape ID and class ID are less reliable, for example,
if designers worked on the source and destination vis boards in dif-
ferent sessions, the IDs may not match. They are thus assigned less
weight. For a given object set in the source vis board, we pick the
object set from the destination vis board with the highest matching
score. If that maximum score is greater than or equal to 5 (out of
10), we designate this pair of object sets to be matching. Otherwise,
there is no matching object set from the destination vis board.

We use a threshold of 5 to determine if there is a match based
on a few plausible matching scenarios: whenever the cardinality
and the data scope scores are both 1, or the cardinality and the
populating field value scores are both 1, or the populating field
value, the data scope and shape ID scores are all 1, we can say with
high confidence there is a match. In all these cases, the weighted
sum would be greater than or equal to 5 (out of 10).

4.2 Visualizing Object Matching Results
Data Animator enables designers to view thematching results in the
Timeline Editor. As mentioned in Section 3.3, automated matching
is performed when users connect two vis boards in the Storyboard
View (Figure 1 - top). To view the matching results between two
vis boards, users select the connection linking these boards, and
click the "Edit Timeline" button. The interface displays the Timeline
Editor (Figure 1 - middle). The left panel (Figure 5) shows the results
of automated object matching for the transition in Figure 2(a). In



Data Animator CHI ’21, May 8–13, 2021, Yokohama, Japan

Figure 5: The left panel of the Timeline Editor, which shows
the results from the automated object matching for the two
vis boards in Figure 2(a). The first timeline specifies the be-
havior of 869 ellipses and the final two correspond to the x
and y axes.

this transition, the source vis board shows a bubble plot of the
populations of different cities in 2000, and the destination vis board
shows a bubble plot of the populations of different cities in 2010.
In both visualizations, the x axis is the longitude of the cities, and
the y axis is the latitude of the cities. The bottom part of the panel
shows a preview of these two vis boards. The main area of the panel
displays multiple layers, one for each pair of matched object sets.
For example, the ellipses in the source and destination vis boards
match up perfectly: the cardinality of the ellipse object set is 869.
Such a perfect matching is represented as a timeline with the same
thickness at both ends. Since the visual properties (size and fill
color) of the matched ellipses are different in the two vis boards,
the timeline is colored blue, indicating tweening is needed. In this
case where automated object matching is successful, the animated
transition as a result of interpolating the ellipses works without
any user intervention. The longitude and latitude axes match up
perfectly too. In addition, there are no differences in their visual
properties. Their timelines are thus colored gray, indicating that
no tweening is needed.

For the transition in Figure 6 (corresponding to Figure 2(e)), more
object sets are involved. In the source vis board, we have a slope
graph showing the changes in urban population from 2000 to 2010

Source
Vis Board

Destination
Vis Board

Figure 6: Enlarged view of the source and destination vis
boards for the animation in Figure 2(e).

Figure 7: Hovering the mouse over the eye icon will show
only the corresponding object set in the preview on the
right.

(each line is a city, and the left anchor points represent year 2000,
the right anchor points represent year 2010), and two bar charts
superimposed over one another (each bar represents a country, the
brown bars represent urban populations per country in 2000, and
the red bars represent urban populations per country in 2010). In the
destination vis board, the bar charts remain the same, but instead
of a slope graph, we have a dot plot. The horizontal axis represents
binned growth factor of population, and each dot represents a city.
The color of the dots represents the city’s population in 2010. The
transition thus primarily happens between the slope graph and the
dot plot (Figure 6).

In this example, there are many layers, each representing the
matching result for one pair of object sets. Since it might be difficult
for users to understand which object set each layer corresponds
to, we added a feature to let users filter out object sets by hovering
over the eye icon at the top right corner of each layer. For example,
in Figure 7, the preview area on the right only shows the path
object set in the slope graph. This path object set does not have a
matching set in the destination vis board, because the slope graph
is replaced by a dot plot. The timeline for the path object set thus
has 0 thickness at the right end. This tapered representation shows
that the path objects will be exiting in the destination vis board.
Conversely, the legend for the dot plot (Legend:pop_2010, seventh
layer in Figure 7) is absent in the source vis board, and it will be
entering into the destination vis board. The timeline representation
thus is tapered where the left end has no thickness.

4.3 Adjusting Matching Results through the
Object Matcher

Since automated matching may fail in certain cases, or produce
confusing transitions, Data Animator provides the Object Matcher
view, a novel user interface for designers to interpret and adjust
the matching results. Wrongly matched objects can be unmatched,
and users can also manually create a match between two or more
sets of objects.
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Figure 8: Selecting a matching result previews the links be-
tween objects.

Using the example in Figure 6 again, there are two sets of ellipses
in the slope graph in the source vis board: the set on the left colored
in gray represents cities in 2000, and the set on the right colored in
red represents cities in 2010. In the destination vis board, there is
only one set of ellipses in the dot plot. All these three sets have the
same cardinality (869), and it would be a perfect match to map any
of the two sets in the slope graph to the set in the dot plot. In this
case, Data Animator creates a matching between the red ellipses
in the slope graph and the ellipses in the dot plot (first timeline
in Figure 7). This also leaves the gray anchor points without any
match (the third layer in Figure 7). Logically this matching is correct,
but the resulting animated transition looks odd as the red ellipses
move through the center of the chart and cross over each other to
get to their position in the dot plot. Designers may prefer instead
having the slope graph fade out and the dot plot fade in, to reduce
the number of flying objects on screen. Thus, the existing match
needs to be removed.

To remove a match, users click the “Edit Matching” button in the
lower part of the panel (Figure 7) to switch to the Object Matcher
View (Figure 8), which is a modified version of the Timeline View.
Users can select the matched object sets (in this case the first layer),

Figure 9: Interface controls for choosing an entering or exit-
ing preset effect for an unmatched object set.

and the preview area on the right shows how individual marks
match across the source and destination vis boards using a blue
link (Figure 8). After selecting the matched object sets, users click
the “Unmatch” button at the top to break the matching. With the
matching removed, users can go back to the Timeline View by
clicking “Done Matching”. They can control how the ellipses in the
slope graph animate out (have the slope graph ellipses fall down
with the "Move Out - to Bottom" preset) and then have the dot plot
ellipses rise up with the "Move In - from Bottom" preset (Figure 9).

Source
Vis Board

Destination
Vis Board

Figure 10: Enlarged view of the source and destination vis
boards for the animation in Figure 2(g).

In another example where we need to transition from a superim-
posed bar chart to a dumbbell chart (Figure 10), the bar chart in the
source vis board superimposes two bar charts, representing the pop-
ulation for each country in 2000 and 2010 respectively; the dumbbell
chart shows the same information with different encodings: each
country is a path, and the x position of the ellipses represents the
population in 2000 and 2010 respectively. Data Animator does not
make a match between any of the marks, because their types do not
match at all. However, a match will be beneficial, as the animation
maintains congruency so that the two sets of bars transition into
the two sets of ellipses.

To manually create the matching, users click the “Edit Matching”
button to switch to the Object Matcher View (Figure 11). Users
select the two object sets they want to link, and then click the
“Match” button. Data Animator will create a matching between the
two sets and generate intermediate frames by tweening.

We refer the reader to the accompanying video that more fully
illustrates the dynamics of these specifications and flow through
the user interface.

Figure 11: Selecting two unmatched object sets to create a
matching.
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5 SPECIFYING TEMPORAL PACING OF
ANIMATIONS

After matching the objects in the source vis board and the desti-
nation vis board, automatic animated transition through tweening
does not always achieve desired results. Animated data graphics
often contain hundreds or more graphical objects, and it can be
overwhelming for all these objects to start animating at once.

Data Animator supports the division of a complex animation
into stages and uses data attributes to stagger the start time and
vary the speed within sets of animating objects. The “Timeline
Editor” in Data Animator differs from other timeline interfaces in
design tools [2, 33] by allowing users to edit temporal properties
of object sets, rather than tediously creating and adjusting each
keyframe for tens or hundreds of objects. In this section we describe
the temporal concepts of the system framework, and introduce a
novel timeline interface for designers to pace the temporal rhythm
of data-driven objects.

5.1 Staggering and Speeding by Data Attribute
In a simple example like Figure 5, where the size and color of the
ellipses in a scatter plot animate between two vis boards, designers
may want to stagger the animation by introducing an incremental
delay to the starting time of each ellipse. Instead of having to do
so manually for all the 869 ellipses, they can use the "Expand"
button in each timeline to show the user interface controls related
to temporal pacing. By default, all the ellipses start at the same
time with the same duration (Figure 12 (a)). Users can choose from
the drop-down menu to either stagger the starting time or control
the speed by an ordinal or quantitative data attribute. For example,
users may want the cities at lower latitudes to animate first, so
they can choose staggering by the attribute “latitude”. The timeline
visualizes how staggering will work by plotting a horizontal line
for each ellipse, where the left and right ends of the line represents
the starting and ending time of the animation. These lines form an
overall shape depicting the distribution of starting and ending times
of the ellipse set (Figure 12(b)). Alternatively, users may want to
control the speed of animation by data, for example, by letting cities
with greater population growth to animate more slowly. They can
select “speed by pop_growth” from the drop-down menu, and the
timeline shows a visual summary of the effect of this action (Figure
12(c)). When users stagger or speed by a quantitative attribute, they
can also choose the aggregate (e.g., mean, max, min) if the object’s
data scope consists of more than one data row and has more than
one value for the chosen attribute.

5.2 Staging
Staging is another commonly used technique to break down a com-
plex animation into sub temporal groups. In the example in Figure
5, multiple visual properties are animating (width, height, and fill-
color). Users may want to animate the size properties first before
animating the fill-color. In Data Animator, each animating property
has its own layer (Figure 12(a)). To create staging, users simply drag
the end points of a timeline in a layer to change the starting and
ending time of the animation for a property. In Figure 13 (a), two
stages are created. In the first stage, the width and the height prop-
erties animate; in the second stage, the fill-color property animates.

Figure 12: Interface controls for using data attribute values
tomodify the speed and staggering of animation effects. The
middle modification makes the animation start times delay
(stagger) as a function of the latitude data attribute. The bot-
tommodification changes the speed to be a function of pop-
ulation growth.

Data Animator also supports applying staggering after the stages
are set up. In Figure 13 (b), we use the “latitude” data attribute to
stagger the ellipses after the stages have been created in Figure
13 (a). Due to staggering, each ellipse will have less duration to
animate, and the resulting durations for the two stages are allocated
proportionately according to the original staging design. Figure 13
(b) shows how this information is conveyed in the timeline view.

Figure 13: Making modifications to create animation stages.
In the top, the user creates a first stage of width and height
change, followed by the fill-color changing. In the bottom
view, stagger each animation as a function of data.
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Figure 14: At the top of the left panel in the Timeline Editor,
users specify the duration of animated transition between
two vis boards

5.3 Hierarchical Keyframes
Figure 13(b) is an example of a novel concept we introduced in
Data Animator: hierarchical keyframes, where the keyframes in a
transition are constrained to the duration of its parent. The allot-
ted time for each successive child cascades as a linear function of
the parent’s duration (a percentage value). There are three types
of parent-child relationships in hierarchical keyframes: Object-
Property, Transition-Object, and Object-Object.

• Object-Property - Objects with transitioning properties act
as the parent timing for those differing property values. With
percentage-based keyframes, the animation of properties
can be staged one after another. Figure 13 (b) is an example
of the Object-Property hierarchical keyframes, where the
properties (as the children) inherit the allotted durations
from the object (as the parent).

• Transition-Object - For a transition between two vis boards,
multiple object sets may be involved. A global duration is
specified as the root of the timing hierarchy. As shown in
Figure 14, the default global duration is 1 second. When
users change the duration, the axis updates accordingly. This
global duration serves as the parent timing for all of the ob-
jects’ transitions between the two vis boards, and all child
objects’ duration is expressed as a percentage of this global
duration. To get rapid feedback on the current design, users
can pause and play the animation preview, change the ren-
dering speed (e.g., “0.5x” for half speed), and manually scrub
the playback by clicking and dragging the playhead (Figure
14).

• Object-Object - Groups or collections from Data Illustrator
are higher-level constructs that visually group and layout
objects. They also serve as the parents of their members in
hierarchical keyframes. For example, in Figure 15, the visu-
alization has a group of two rectangles. The parent group
object has a duration of 80% of the global duration. Each rec-
tangle’s duration accounts for 50% of their parent’s duration,
and each rectangle is staged one after another in the group.
Changes to keyframes of the parent group will constrain the

Figure 15: Parent objects such as groups constrain the allot-
ted duration to child objects such as two rectangles.

allotted time for both child rectangles while still preserving
their staging. For an example of how the Object-Object rela-
tionship is used in an actual animated data graphics, please
refer to the “Stephen Few’s Box Plot” video in our gallery
(http://data-animator.com/gallery/few_box_plot.html).

5.4 Edit Temporal Pacing in the Timeline View:
Scenarios

In this section, we present three authoring scenarios to illustrate
how we can use hierarchical frames to create various staging and
speeding effects.

Figure 16: Pacing the animation for ellipses growing on a
map. The user has delayed the start of the ellipses’ move-
ment and sets the speed to be a function of population
growth.

Scenario 1: This first example is based on Figure 5, where the
size of the ellipses animates to show data from population_2000
to population_2010. The timeline consists of three layers: the
matched ellipse sets, the matched x-axis for longitude, and the
matched y-axis for latitude. Each layer consists of a source keyframe,
a destination keyframe, and a path duration. For each layer, the
object count is shown next to the source and destination keyframe
(e.g., there are 869 peer ellipses matched from source to destination).
Keyframes control the start and end times for all objects in the set
to animate. In Figure 16, we click and drag the start keyframe to
delay the set of ellipses from the start of the transition by 20%. The
ellipses are now all delayed by 20%, simply dragging one keyframe
sets the keyframes for all 869 ellipses in the set. In Data Animator,
keyframes are assigned a percentage value rather in seconds. As
mentioned in Section 5.3 this allows for relational timing to be
preserved. When the user drags a keyframe the computed time in
seconds appears on the timeline above. This feature is particularly
useful for interpreting timing within hierarchies.

In this animation, by default, the ellipses animate uniformly
within the set. To focus the viewers’ attention on the ellipses that
dramatically grow in size, we vary the speed of each animating
ellipse based on the population_growth data attribute. Varying the
speed creates an effect where the duration of each animating ellipse
in the set is equivalent to how much the ellipse changes in size.
To achieve this in the interface, we change the “Sequencing” from
“All at once” to "Speed" by population growth rate. The sequencing
updates to show the groupings created for population growth rate,
and how they vary the speed (or duration). Playing the animation
back, we notice it is too quick to perceive the changes in ellipse
size. So we modify the duration of the entire transition to 4 seconds.
All of the relative timings such as the delay and speed sequencing

http://data-animator.com/gallery/few_box_plot.html
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are preserved due to the hierarchical keyframe approach of Data
Animator.

Figure 17: Transitioning from a symbol map to slope-chart
without staging.

Figure 18: Coordinating multiple sets of unmatched objects
with staging and staggering.

Scenario 2: Animating numerous sets of objects at the same
time can result in a transition that is visually jarring and distracting
to the viewer. For example, when transitioning from the symbol
map to a slope-chart, the default timings results in Figure 17. The
lines of the slope-chart intersect with the ellipses of the symbol
map that match to the endpoints of the slope-chart. In the timeline
we can coordinate the pacing of this animation to instead make
small changes incrementally rather than one big transition. We
start out by adding a delay to when the set of paths animate in to
form the slope-chart, so we drag the start keyframe of this layer
(third from the top in Figure 18) to 90%. Now that the paths our
visually out of the way, we stage the matched ellipses before them.
However, this staging does not solve our problem as the ellipses
are animating too many visual properties at once. To stage these
visual properties, we click to expand the properties of both sets
of ellipses (top two in Figure 18). Expansion reveals the visual
properties that differ between source and destination boards. Each
animating property has its own pair of keyframes that we will use
to stage this animation. We start by dragging the end keyframe
for the x position to 30% in order to have it happen first. Next, we

continue to stage width and height after x position and then create
a final stage for the y-position. We redo the same staging process
for the other set of ellipses in the timeline. And now this staging
creates the effect of the symbol map clearing away from the middle
of the canvas and stacking on top of each other as seen in Figure 18
(right). This staged transition is clearer than that in Figure 17. The
timeline interface allows us to change the ordering of animating
visual properties within sets of objects as another means to stage.

Figure 19: Coordinating multiple sets of unmatched objects
with staging and staggering. The existing ellipses and paths
of the slope-chart (lower timelines) animate first and are
staggered by population. The new ellipses show up after
that.

Scenario 3: The timeline editor also allows users to craft the
pacing of unmatched objects entering and exiting from view. In
this scenario, we use the example in Figure 6: two sets of ellipses
and one set of paths that makeup a slope-chart are unmatched and
exiting the scene. Additionally, one new set of ellipses enters into
the scene to compose the dot plot. In Figure 19 we create staging
between the two sets of exiting ellipses by adjusting both start
keyframes to 45% and the start keyframe for the set of ellipses
entering to be at 55%. Now the ellipses are staged before each other
with a momentary pause of 10%. Instead of fading, we want the
ellipses from the slope-chart to move down and out of the chart,
and for the dot plot ellipses to rise up from the bottom – so we
set both preset effects to be a move effect. Preset effects provide
animation for unmatched layers that enter or exit. Data Animator
supports fade, scale, scale & fade, move, move & scale, wipe, and fly
preset animations. As is, the animation has better visual ordering,
but all sets of ellipses occlude each other as they move. To combat
this issue, we employ staggering for both sets of exiting ellipses
based on population data attributes represented in the y axis. The
ellipses from the dot plot have the same occlusion problem, but
instead of using staggering we opt to sequence the speed of the dot
plot ellipses related to their y position. With this sequencing the
ellipses now animate at equivalent speed to the distances they have
to travel. This gives the visual effect of the ellipses rising together –
dropping off ellipses in their respective y positions as they move
upward. Finally, we need to appropriately animate the set of lines
that connects the slope-chart. Currently, the lines overlap with
the entering dot plot, cluttering up the animation. We change the
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end keyframe of this set of lines to be 10% to create the illusion
that the lines hold the slope-chart together, and removing the lines
releases the end point ellipses allowing them to fall. To time the
lines with the falling end points we also sequence the lines based
on the population in 2000. In this example we have gone from an
undesirable transition created automatically to an animation that
viewers can more easily follow with staging and sequencing of
numerous sets of peer shapes.

6 IMPLEMENTATION
We implemented Data Animator as an HTML web application us-
ing a typical React [21] and redux [1] system architecture. The
user interface (UI) components are bolstered by Blueprint.js [46], a
React-based UI toolkit for data-dense web interfaces. With redux,
the app maintains current (and previous states) for the animated
data graphic specification edited by the user. The animated data
graphic specification encapsulates all information needed to repro-
duce a design: vis boards (i.e., static Data Illustrator specifications),
animated transition designs, and datasets.

The rendering engine takes the animated data graphic specifica-
tion as input to render to an HTMLCanvas element with WebGL
technologies. Our custom WebGL rendering engine is a re-usable
component – used in the “Timeline Editor” and “Preview”. The ren-
derer component is based on the Three.js [14] and Three-BAS [65]
libraries. Three-BAS (Buffer Animation System) is an extension of
Three.js where shapes (e.g., rectangles, ellipses, paths) that share
the same geometry but differ in visual properties (e.g., size, posi-
tion, color) are rendered with animation logic in WebGL shaders.
This paradigm improves frame-rate performance by storing visual
properties of similar geometries, in our case peer shapes, on the
Graphics Processing Unit (GPU). The rendered animation state for
all peer shapes is then updated via custom vertex and fragment
shaders on the GPU. This improves on typical WebGL applications
that interpolate visual properties on the UI thread, creating a bottle-
neck that degrades frame-rate performance. In Data Animator, user
changes to animating objects trigger an update to the properties
stored in the GPU. However, the application state is separated from
the animated data graphic specification to minimize updates to the
rendering engine, only triggering updates to the React-based UI. We
chose the Three-BAS architecture after evaluating the frame-rate
performance of other JavaScript graphics libraries [4, 26, 28, 40, 50]
against several expressive animated data graphic designs.

7 EVALUATION
7.1 Examples
To demonstrate the expressivity of our approach, we created a set of
animated data graphics using the Data Animator system. The collec-
tion is available at: https://data-animator.com/gallery/index.html.
Each example includes a completed project file, a video demon-
strating the authoring process, and the final interactive version of
the animated data graphic. The gallery consists of a diverse set of
re-creations and variations from projects that sample the design
space [57].

A gallery adequately showcases archetype designs, however, to
show all possible designs would be time-consuming to create that
number of examples. Instead, we comment on Data Animator’s

expressivity here with a brief description of the animated transi-
tion types that it supports. Data Animator currently supports 6 out
of 7 transition types included in Robertson and Heer’s taxonomy
[31]. The current implementation supports transitions for substrate
transformation, ordering, visualization changes, and data schema
changes (orthogonal and nested). Data Animator also supports
the specification of filtering (or highlighting) and timesteps by the
user specifying multiple vis boards in Data Illustrator, each corre-
sponding to a filtered state or time step. The system does not allow
designers to generate these transitions from a single visualization
template. In Section 8 we discuss future work to support the data-
driven generation of multiple vis boards automatically by a data
attribute. Data Animator does not support view transformations,
lacking a user-directed camera to transition between viewpoints.

7.2 Usability Study
To evaluate the usability of Data Animator we conducted a re-
creation study similar to the protocol used in related visualiza-
tion authoring tools [42, 49]. In practice, designing animated data
graphics involves gathering and cleaning a dataset, conducting data
analysis to find insights, brainstorming the key visualizations and
animations to convey those insights, and finally executing those
ideas as an animated data graphic. A re-creation study focuses on
that final execution step in the design process. We considered other
study designs to evaluate Data Animator, one of those was an it-
erative, open-ended design task. For the purposes of evaluating a
tool, re-creation tasks allow participants to experience authoring
the same example animation and requires participants to test a
larger range of the tool’s features than they might otherwise. In an
open-ended design task, there is no guarantee that participants will
use the same breadth of features. In the case of our study, the tasks
do not include designing static visualizations in Data Illustrator.
Participants are provided with completed static visualizations to
import into Data Animator for each task. While the re-creation task
is not an exact replica of the design process, the ability to think and
act in terms of our keyframe approach is the cornerstone of using
Data Animator.

7.2.1 Participants. For the study, we recruited 8 participants with
experience in graphic, animation, and visualization design. The
participants (7 male, 1 female) reside in different geographic areas
in the United States and their job titles range from UX designer,
graphics designer, data journalist, grad student in HCI, and pro-
fessor in data governance. The participants had varying years of
experience in the related design disciplines:

• Graphic Design: none (0); less than 1 year (2); 1 to 2 years
(1); 2 to 5 years (3); 5 to 8 years (1); more than 8 years (1)

• Animation Design: none (1); less than 1 year (2); 1 to 2 years
(2); 2 to 5 years (3); more than 5 years (0)

• Visualization Design: none (0); less than 1 year (0); 1 to 2
years (3); 2 to 5 years (3); 5 to 8 years (1); more than 8 years
(1)

Participants described the kinds of animated visualizations they
create: interactive visualizations with animation (5); data stories or
videos (3). To create animations, the participants most frequently
use programming toolkits (4), Adobe After Effects [2] (3), and pre-
sentation tools such as Microsoft PowerPoint or Keynote (4). When

https://data-animator.com/gallery/index.html
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creating visualizations, the participants have employed a wide vari-
ety of tools such as vector editors (7); shelf builder interfaces like
Tableau (6); spreadsheets such as Excel (6) or programming toolkits
(5). When evaluating authoring tools with generative data support,
it is important to have a mix of participants with programming and
non-programming experience to see if programming knowledge af-
fects participants’ ability to understand concepts in Data Animator.
Also, it is important to understand if prior experience with Data
Illustrator would correlate to each participant’s experience using
Data Animator. The participants had varying degrees of experience
with Data Illustrator: none (4); browsed the tutorials and tried once
(1); used multiple times (3).

7.2.2 Procedure and Tasks. Each study lasted about 1.25 hours and
was conducted remotely over video conferencing due to COVID-
19. Because it was a remote study, participants used their own
computers with varying performance metrics, screen sizes, and
operating systems. Despite the difference in computing setups there
were almost no usability issues due to any of these variables (one
participant could not import through drag and drop). The only
constant was that all participants used the Chrome web browser.
During the session, participants shared their screens and were
encouraged to think-aloud during each task. Audio and screen
sharing feeds were recorded, but no user meta-data was logged
by the system. We conducted two pilot studies to test our study
protocol and all the study sessions were conducted by the first
author.

Participants followed a 20-to-25-minute tutorial led by the mod-
erator. The tutorial walked through a running example of four
animations that transition through a series of bar charts, a bub-
ble chart, and a stacked bar chart showing medal counts from the
2012 Olympic Games in London (http://data-animator.com/gallery/
olympic_medals.html). Participants were prompted to take a break
before moving on to the task portion of the study.

We then asked participants to re-create six non-trivial anima-
tions from two example data stories. Participants were provided
videos of each animation task and the example visualization files to
import into Data Animator. The first three tasks are based on Russell
Goldenberg’s “Twenty Years of the NBA Redrafted” data story [25]
(study version: http://data-animator.com/gallery/nba_redraft.html).
Tasks 1-3 require the participant to create three animations that
transition through a series of four visualizations showing how
the NBA draft from 1989 to 2008 could be redrafted based on
past performance to reveal which players lived up to their draft
hype or exceeded expectations. The four visualizations include
two scatter-plots and two bubble charts. The second example takes
inspiration from Tony Chu and Stephanie Yee’s “A Visual Intro-
duction to Machine Learning - Part 1” [64] (study version: http:
//data-animator.com/gallery/intro_to_ml.html). Tasks 4-6 ask par-
ticipants to create three animations that reveal the beginnings of a
decision-tree model that searches for the best data attribute to clas-
sify housing data. The visualizations include a scatter-plot, grouped
uni-variate charts, a histogram, and a bar chart. Each task was
presented to the participant as a video, animation plays back and
includes a description on the side. Since we were not testing the
participants’ skills to deconstruct an animated visualization, we
explained the dataset, data encodings, and animation pacing within

each example. During pilot studies we found that a video of each
animation without descriptions was insufficient for participants.
Participants commented that it was difficult to decipher the pacing
mechanisms of the animation. Therefore, we included text descrip-
tions of the animation design within each video. At the end of the
session, each participant completed a questionnaire to rate their
experience (e.g., ease of use, learnability, enjoyment) and answered
questions in a semi-structured interview about the moments they
felt confused or empowered by Data Animator and how the tool
could be improved or helpful for their current visualization prac-
tices.

The 6 re-creation tasks are meant to increase in difficulty. All
participants completed each task with almost no help (except that
P1 required assistance on Task 4). On the whole, participants com-
pleted the tasks quickly (𝜇=2 minutes 42 seconds, 𝜎=1 minute 29
seconds). The time taken to complete each task is commensurate
with the difficulty of the steps required as seen in Table 2.

7.2.3 Results. Participants rated their authoring experience with
Data Animator on a 7-point Likert scale. Overall participants fa-
vored the usability of Data Animator: on authoring animations,
𝜇=2.25, 𝜎=1.16 (1-very easy, 7-very difficult); on overall experience,
𝜇=1.63, 𝜎=0.74 (1-very enjoyable, 7-very frustrating); on learning,
𝜇=3, 𝜎=1.69 (1-very easy, 7-very difficult). As expected, the partic-
ipants rated the re-creation tasks to be complex, 𝜇=6.63, 𝜎=0.52
(1-very simple, 7-very complex).

All participants found Data Animator to be useful for creating an-
imated data graphics. The participants praised how Data Animator
“treats data as a first-class citizen” (P7) as it leverages the underlying
data to automatically match objects between visualizations and
design pacing effects based on data attributes. In particular, partici-
pants noted how Data Animator fills the gap between programming
an animated data graphic and using animation design tools: “The
speed and flexibility at which you can [create animations] with Data
Animator compared to writing custom code or having to wrestle with
a design tool that is not meant for working with data is amazing” (P5).
The participants with programming knowledge commented how
Data Animator provides comparable results to coding in a more
streamlined approach “If I wanted to create something that looked
like this [with code] would be quite a headache. Being able to change
what you see and play with the animations is pretty great” (P6). They
also compared the expressiveness of Data Animator to related visu-
alization specific tools: “Tableau’s animations are cool and magical
when they get it right, but you have very little avenues for when they
get the animation wrong. So, I appreciate that Data Animator takes
that into account” (P7). Participants felt empowered to be able to
create animations without having to program: “As someone who
doesn’t code, I have to dream about creating [static] charts because
there are so few tools that I can use. And then animating charts is
like a dream within that dream! [Animating] is something that is
completely outside of what I can expect, unless I’m willing to animate
by hand in After Effects. So yes, [Data Animator] is tremendously
useful.”

The timeline interface felt natural and familiar to participants
with experience using similar keyframing interfaces. The partic-
ipants appreciated that Data Animator includes all of the “entry
level stuff” for creating keyframe animations such as easings and
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Table 2: Task completion results for Tasks 1-6 of usability study.

Completion Times (minutes:seconds) Data Animator Features Used Per View

Task
00:00 02:00 04:00

Mean (𝜇) SD (𝜎) Storyboard Timeline Editor Object Matcher

1 00:54 00:28 create transition stagger shapes
2 02:17 00:53 create transition stagger shapes; stage properties
3 02:53 00:57 create transition stage properties; stage axes
4 03:27 01:35 create transition stagger shapes; stage properties; stage axes match shapes
5 03:44 01:40 create transition stage shapes/collection; stagger shapes; stagger col-

lections; set preset effect; stage axes
6 02:55 01:18 create transition stagger shapes; stage properties; stage axes/legends

adjusting keyframes - but also provides novel user interfaces to
create staggering and speeding by data that they “have not seen
before” (P2). All participants commented on the ease at which they
could coordinate the timing of sets of objects all by changing one
keyframing. Many of them described how the same process would
be “time-consuming”, “brutal” and “painful” to do by hand in design
tools such as Adobe After Effects.

The participants also suggested additional features to perfect
the timeline editing experience. Many asked for the ability to
snap keyframes to nearby keyframes or adjust multiple keyframes
together with selection. P5 and P7 also proposed the idea of a
stage component that could divide the overall transition into sub-
transitions which could alleviate the need to align keyframes when
staging.

All participants were able to comprehend the results of the auto-
matic matching algorithm.Many participants felt that this matching
feature was similar to other auto-animate or “Magic Move” features
from related tools [3, 6] For example, P2 commented on how mor-
phing the ellipses to rectangles in Task 4 would be “super hard and
there is no fix [in other tools] - you have to do it frame by frame in
After Effects”, and they appreciated the idea of Data Animator to
use data to make that matching for you. Despite understanding
and appreciating the results of the automatic matching algorithm,
5 participants found the interface to manually change matches to
be confusing. P7 commented that “all the concepts are there, but it
lacks the affordances in the user interface to understand what you
should do”. Also, P2 commented that “it would be nice to see what
happens after you make a match – I’m guessing that was the right
thing to do, but the interface doesn’t immediately clarify that for me”.
Future improvements to Data Animator should consider improving
the “Object Matcher” interface by: positioning interface elements
as to guide the user in the expected order of operations, create affor-
dances surrounding the layers to select, clarify which action button
to click next, and improve feedback when matches are created or
removed.

When asked about how they would use Data Animator, the ma-
jority of participants responded that they would use it for presenta-
tion of data. P7 explains: “my favorite visualizations takes something
very complex and breaks it down piece-by-piece. So, something like
VORP from the NBA example, nobody gets what that is but if you take
some very well-known metrics and walk them step by step to how
they relate... they will at least be closer to understanding that complex
concept... [I create] Keynote decks where a concept builds on top of

another concept [and so on]. I usually don’t use real data for [those
animations] but would I ever if I could!” Participants commented
on additional uses outside of presenting data. P6 felt that it could
be helpful for teaching data analysis – allowing students to create
more expressive representations of their data. They also explained
how a tool like Data Animator could help improve data literacy – as
a broader user group (designers) would be able to create new types
of visualizations. Even participants with programming knowledge
felt that Data Animator would save “a lot of time” to prototype ani-
mations that they would eventually program in a fully interactive
web page (P5).

8 DISCUSSION AND FUTUREWORK
A major prerequisite of using Data Animator is that the static visu-
alizations need to be in the Data Illustrator format. We acknowledge
the vital role that Data Illustrator provides in our approach: produc-
ing static visualization keyframes. Data Animator’s role is to declare
animated transitions between two static visualizations, which is the
basis for the keyframe animation approach. This assumption can
be limiting, as Data Illustrator is not necessarily integrated in many
designers’ workflows. However, basic vector graphics formats such
as SVG are not sufficient to author animated data graphics. It is
essential to provide information about data binding, visual object
grouping and hierarchy so that the system can automate the match-
ing of objects between static graphics. To date, there has been no
universal format that describes complete information about a static
data visualization, and different authoring systems for animated
data graphics are adopting different standards or formats. For exam-
ple, Canis [24] requires a data-enriched variant of SVG to be used
as input format. We chose the Data Illustrator framework because
it also includes information about object grouping and hierarchy
in addition to data binding, and such information is useful when
designers author temporal pacing that depends on the structure of
visualizations. In future work, we are interested in developing tools
that translate visualizations in other formats to the Data Illustrator
format. Such a tool may parse a vector graphic, analyze the prop-
erties and structure of visual objects, and ask designers to provide
minimal annotations. The output of such a tool can be directly fed
into Data Animator as input static visualizations.

The dependency on the Data Illustrator file format does not
mean that users of Data Animator need to know how to use Data
Illustrator. 5 of the 8 participants in our user study have minimal
experience in using Data Illustrator, but all of them could complete
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the tasks in a few minutes without help. We have thus found no
qualitative evidence that prior experience with Data Illustrator
affects the use of Data Animator. This finding suggests that Data
Animator has the potential to reach a broad set of users who are
not necessarily familiar with Data Illustrator.

Users desire the capability to share their animated data graphics
with others via theweb.We intend to support the export of animated
data graphics created in Data Animator as template web pages. At
the time of publication, this feature had not been fully realized
and is earmarked for future system updates. The export process
will allow authors to produce an interactive web page of their data
narrative, similar to the “Preview” panel of the system. Authors will
support navigation between vis boards in their data story via user
input (e.g., button-clicks, scrolling). The exported HTML page will
contain a single canvas element to display the animated data graphic
and user input elements. We plan to include a custom JavaScript
plugin library to handle generating, rendering, and navigating an
exported animated data graphic specification. The plugin library is
a pared-down version of the rendering engine and playback features
supported by Data Animator.

The main challenges to implementing export capabilities are file
size and rendering performance. Exported animated data graphics
comprise multiple static visualization keyframes, each containing
meta-data for the graphical marks, hierarchies, data tables, data
scopes, and visual encodings. Compression techniques should be
used to remove redundancies from these keyframes and to ensure
manageable file sizes for hosting web-based content. Second, the
rendering capabilities of the exported web page should render at an
adequate frame rate (45-60 frames per second). The current Data
Animator rendering engine based on three.js [14] and Three-BAS
[65] achieves this level of performance. We plan to re-package this
rendering code as part of the export plug-in.

Our primary focus in this paper is on authoring transitions be-
tween two static graphics under the keyframing paradigm. More
work is needed to further enhance the expressivity of Data Ani-
mator. For example, keyframes in animations like a bar chart race
are generated by updating a bar chart template with a temporal
attribute. Using Data Animator, creating a bar chart race would be
very tedious, because designers need to prepare multiple vis boards,
each corresponding to a different visualization state. Designers
need to be able to import a visualization template and generate
multiple vis boards automatically by a data attribute. A procedural
paradigm would be appropriate for such functionality, as in the
case of transition_time and transition_states in gganimate [41]. In
addition, animated data graphics can benefit from techniques such
as adding highlights and annotations, dynamically filtering objects
by data, and syncing animated transitions with text explanations
and voice narration. We plan to add these features to Data Animator
in the future.

9 CONCLUSION
We present Data Animator, an authoring system for creating ani-
mated data graphics. The design of Data Animator focuses on two
challenges: 1) establish matching between graphical objects on two
static visualizations as key frames so that tweening, entering or
exiting effects can be applied automatically, and 2) enhance the

expressive power of the animated transitions by supporting stagger-
ing and staging that are driven by data attributes or data hierarchies.
A study with 8 designers shows that Data Animator is learnable
and usable: all the participants can complete each of the six non-
trivial animation authoring tasks in a few minutes with minimal
help. Feedback from the participants suggest further enhancement
is required to improve the Object Matcher interface.
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