
ProcVQA: Benchmarking the Effects of Structural Properties in
Mined Process Visualizations on Vision–Language Model Performance

Kazi Tasnim Zinat*, Saad Mohammad Abrar*, Shoumik Saha, Sharmila Duppala,
Saimadhav Naga Sakhamuri and Zhicheng Liu

University of Maryland
College Park, MD

{kzintas, sabrar, smksaha, sduppala, ssakhamu, leozcliu}@umd.edu

Abstract
Vision-Language Models have shown both im-
pressive capabilities and notable failures in data
visualization understanding tasks, but we have
limited understanding on how specific proper-
ties within a visualization type affect model per-
formance. We present ProcVQA, a benchmark
designed to analyze how VLM performance
can be affected by structure type and structural
density of visualizations depicting frequent pat-
terns mined from sequence data. ProcVQA con-
sists of mined process visualizations spanning
three structure types (linear sequences, tree,
graph) with varying levels of structural den-
sity (quantified using the number of nodes
and edges), with expert-validated QA pairs on
these visualizations. We evaluate 21 propri-
etary and open-source models on the dataset on
two major tasks: visual data extraction (VDE)
and visual question answering (VQA) (with
four categories of questions). Our analysis re-
veals three key findings. First, models exhibit
steep performance drops on multi-hop reason-
ing, with question type and structure type im-
pacting the degradation. Second, structural den-
sity strongly affects VDE performance: halluci-
nations and extraction errors increase with edge
density, even in frontier models. Third, extrac-
tion accuracy does not necessarily translate into
strong reasoning ability. By isolating structural
factors through controlled visualization gener-
ation, ProcVQA enables precise identification
of VLM limitations. ProcVQA is available at:
https://github.com/kzintas/ProcVQA.

1 Introduction

Vision–language models (VLMs) have shown both
considerable promise and notable failures in inter-
preting data visualizations, a domain that requires
cross-modal grounding between visual structures
and symbolic encodings (Liu et al., 2023a; Zhu
et al., 2023). While prior work suggests that mod-
els struggle with specialized charts such as gantt

* Equal contribution.

or funnel charts over basic line or bar charts (Han
et al., 2023), and complex visualizations (e.g., more
subplots) impair model performance (Wang et al.,
2024), there remains limited insight into which spe-
cific features within a visualization type influence
model performance. One reason for this gap lies in
the nature of existing benchmark datasets (tab. C.1),
which are either synthetically generated (Xia et al.,
2024) or curated from diverse online sources (Pew
Research Center, 2025; OWID, 2025; Tableau Pub-
lic, 2025). Although useful, these datasets gen-
erally lack systematic control over visualization
features, making it difficult to rigorously assess
their roles in shaping VLM performance.

As one of the first attempts to address this gap,
in this paper we focus on a particular type of visu-
alization: node-link visualizations depicting mined
process patterns (hereafter referred to as mined
process visualizations). Such visualizations show
frequent patterns extracted from a set of event se-
quences, where the patterns highlight important
events, workflows, and dependencies. They have
been extensively studied in the areas of visual an-
alytics and process mining and incorporated into
commercial tools for various application domains
such as clinical pathways (Kwon et al., 2021; Mag-
allanes et al., 2022), customer journeys (Liu et al.,
2017), and workflow analysis (Allard et al., 2019).

We introduce ProcVQA, a benchmark of 118
mined process visualizations from eight real-world
domains. The benchmark incorporates controlled
variations on two visualization properties: structure
type (three types of common node-link structures:
linear sequences, trees, and graphs), and structure
density (quantified by node and edge counts). Us-
ing a standardized visualization generation pipeline
(Zinat et al., 2023), we control for encodings, ty-
pography, color, and glyphs, removing stylistic con-
founds that hinders analyzing structural effects in
other benchmarks. This enables isolation of struc-
tural factors that affect VLM performance.

https://github.com/kzintas/ProcVQA

Figure 1: Example process visualizations across three node-link charts: (left) tree, (center) graph, and (right)
linear sequence clusters summarizing similar event flows. These charts are depicting a basketball play
sequence. ProcVQA uses such charts to evaluate VLMs’ capabilities in interpreting sequential structures.

We evaluate 21 VLMs across two complemen-
tary tasks: visual data extraction (VDE) and vi-
sual question answering (VQA). The VQA task is
further categorized by reasoning complexity, with
questions requiring either single-hop (value extrac-
tion, sequential reasoning) or multi-hop (value
aggregation, unanswerable detection) reasoning
(tab. A.3). This design allows us to analyze VLM
performance across three dimensions: structure
type, structural density, and reasoning complexity.

Our findings show that current VLMs struggle
with multi-hop reasoning, with performance vary-
ing by question type and visualization structure.
Extraction accuracy declines as structural density
increases, with the degree of degradation differ-
ing across models. Structure type also affects ex-
traction accuracy, with most models performing
weakest on graphs.

To summarize, our contributions include:
• ProcVQA, the first benchmark created for eval-

uating VLM performance on process visualiza-
tions across three structure types with varying
structural densities.

• A comprehensive multi-dimensional analysis re-
vealing how structural type, structural density,
task, and reasoning complexity interact to affect
VLM performance.

2 ProcVQA Benchmark

2.1 Chart Corpus

We curate a corpus of 118 process visualizations
covering datasets from eight domains (app. A.1)
and three process visualization types (app. A.3).
These visualizations represent mined patterns
(app. A.2) from real-world event sequence data, de-
picting sequential and numeric information. Fig. 1
illustrates our three visualization types: trees show-

ing hierarchical event relationships with single par-
ent nodes (left), graphs capturing precedence rela-
tionships with multiple parent nodes (middle), and
linear sequence clusters that group similar event
sequences to reveal common patterns (right). We
elaborate the chart generation and ground truth cu-
ration process in app. A.4.

2.2 Task Design

Visual Question Answering (VQA). We manually
authored and validated 144 questions, each yield-
ing either a single numeric answer or being labeled
as unanswerable. Two domain experts indepen-
dently created and then cross-validated the ques-
tions based on the visualizations. A third expert
conducted final validation of the agreed-upon ques-
tions. Questions without consensus were excluded.
Each question was verified to be answerable us-
ing only the visualization e.g., no external world
knowledge is necessary. The questions fall into
four categories (tab. A.3) tailored to process visu-
alizations: (1) value extraction: retrieve a specific
value from a node or edge, (2) sequential reason-
ing: identify an antecedent–sequela relationship,
(3) value aggregation: sum values across multiple,
possibly distant, elements, and (4) unanswerable:
detect that the queried information is absent.

The first two categories involve simply locating
chart elements and are classified as single-hop. In
contrast, the latter two demand synthesizing infor-
mation from multiple elements, and we therefore
designate them as multi-hop reasoning tasks. Ex-
amples of VQA questions for each visualization
class are shown in figs. D.1 to D.3.
Visual Data Extraction (VDE). In this task, the
model is asked to output all the tuples: for linear
sequence clusters, the tuples are in the form of

node–value pairs, for tree and graph structures, the
tuples are in the form of source–target–value triples.
Overall, the corpus contains 2, 583 ground truth
tuples across over 118 visualizations.
Structural Density Metric: For each visualization
type, we compute the median (m) and standard
deviation (σ) of node and edge counts and assign
every chart to a density tier: low (≤ m), medium
(m,m+σ), or high (> m+σ). An overall den-
sity score is obtained by averaging the node- and
edge-based tiers. Tab. A.1 provides summary statis-
tics and tab. A.2 provides structural density ranges
for each tier across visualization types.
Experiment Setting: Tab. A.3 summarizes the
question distribution across the four VQA cate-
gories and the chart counts at each density level
for VDE task. Every VLM (app. B.3) is tested
on both tasks. For each chart type, we provide a
type-specific system prompt (figs. D.1 to D.5) that
describes the chart semantics (Wei et al., 2022), but
supply no in-context examples: the evaluation is
strictly zero-shot (Xian et al., 2017). Additional
details and justifications of the experimental setup
are provided in app. B.1.

3 Findings

We evaluated 21 VLMs on ProcVQA across visual
question answering (VQA) and visual data extrac-
tion (VDE), and present the key findings below.
The evaluation metrics are described in app. B.2
and full quantitative results are available in app. E.

0 20 40 60 80 100
Accuracy

Single-Hop

Multi-Hop

Ta
sk

 Ty
pe

gemini-2.5-pro_thinking

llama-4-scout-17b

gemini-2.5-pro_thinking

llama-4-maverick-17b

Gemini
Claude

GPT
Llama

Qwen
Gemma

Proprietary (Avg) Open Source (Avg)

Figure 2: Comparison of model accuracy across Single-
Hop vs Multi-Hop reasoning. Even top-performing
models show sharp declines on multi-hop questions.

Reasoning Capability Improves Performance.
Gemini-2.5-Pro-Thinking achieves the highest ac-
curacy on both single-hop (95.52%) and multi-
hop (76.62%) VQA tasks across all tested mod-
els (tab. 1). On VDE tasks, it either leads or is

Low Medium High0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Node Density

Low Medium High

Edge Density

Proprietary Open Source

Claude-3.5-Haiku
Claude-3.5-Sonnet
Claude-3.7-Sonnet
Claude-3-Haiku
Gemini-2.0-Flash
Gemini-2.5-Flash

Gemini-2.5-Pro
Gemini-2.5-Pro-Thinking
GPT-4.1
GPT-4o
QVQ-Max

Qwen-VL-Max
Qwen-VL-Plus
Qwen2.5-VL-7B
Gemma-3-27B
llama-3.2-11B

Llama-3.2-90B
Llama-4-Maverick-17B
Llama-4-Scout-17B
Qwen2.5-VL-32B
Qwen2.5-VL-72B

Structural Density Level

Figure 3: Accuracy on Visual Data Extraction (VDE)
task across structural density levels (low, medium, high).
While models generally achieve high accuracy on low-
density charts, performance declines as density in-
creases.

second-best across all levels of structural density
(99.43%, 99.02%, 91.08% for low, medium, and
high densities, respectively). It is also the only
model with fewer than 100 hallucinations (82 to-
tal; tab. E.1). Specifically, for multi-hop reason-
ing tasks, it outperforms its non-thinking variant,
Gemini-2.5-Pro (63.64%), by almost 13%. This
indicates that the model’s “thinking” capability,
supporting extended reasoning chains, provides an
advantage over the other models.

Smaller Models Extract Fewer and Less Ac-
curate Data for VDE. Within the same model
family, smaller models extract fewer data ele-
ments (tab. E.1). For example, Llama-3.2-11B-
Vision extracted 1, 285 fewer tuples than Llama-
3.2-90B-Vision. In contrast, larger models achieve
near-complete coverage, such as Gemini-2.5-Pro-
Thinking (98.3%), Llama-3.2-90B-Vision (99.1%),
and Gemini-2.5-Pro (98.2%).

The extraction gap widens for high-density vi-
sualizations: smaller models like Qwen2.5-VL-7B
and Llama-3.2-11B-Vision extracts only 416 tuples
(39.7% coverage) and 310 (29.6%) tuples respec-
tively (tab. E.2).

Smaller models also show weaker reasoning ac-
curacy. For example, Claude-3.5-Sonnet outper-
forms Claude-3.5-Haiku by 21% on single-hop and
13% on multi-hop tasks.

Hallucination Increases with Structural Density
for VDE. As structural density increases, most
models show a corresponding increase in hallu-
cination rates, with edge density generally hav-
ing a stronger effect than node density (tabs. E.2

VQA Task (Acc. %) VDE Task (Acc. %)
Model Single-Hop Multi-Hop Low Medium High

Pr
op

ri
et

ar
y

Gemini-2.5-Pro-Thinking (Team et al., 2023) 95.52 76.62 99.43 99.02 91.08
Gemini-2.5-Pro (Team et al., 2023) 94.03 63.64 98.60 97.00 91.15
Gemini-2.5-Flash (Team et al., 2023) 91.04 71.43 88.98 93.21 82.79
Gemini-2.0-Flash (Team et al., 2023) 89.55 61.04 97.61 96.37 83.37

Claude-3.7-Sonnet (Anthropic, 2024) 91.04 62.34 98.93 96.77 82.77
Claude-3.5-Sonnet (Anthropic, 2024) 86.57 50.65 97.44 95.63 78.41
Claude-3.5-Haiku (Anthropic, 2024) 65.67 37.66 88.40 87.71 58.65
Claude-3-Haiku (Anthropic, 2024) 67.16 24.68 78.41 78.35 48.80

GPT-4.1 (Achiam et al., 2023) 85.07 57.14 96.56 93.69 74.08
GPT-4o (Achiam et al., 2023) 79.10 46.75 95.13 91.72 58.31

Qwen-VL-Max (Bai et al., 2023) 88.06 40.26 93.46 83.45 63.90
Qwen-VL-Plus (Bai et al., 2023) 71.64 15.58 64.77 46.72 23.00
QVQ-Max (Bai et al., 2023) 77.61 40.26 84.71 74.09 54.96

O
pe

n
So

ur
ce

Llama-4-Maverick-17B (Meta, 2025) 88.06 59.74 95.41 89.22 75.72
Llama-4-Scout-17B (Meta, 2025) 89.55 49.35 83.43 82.01 58.26
Llama-3.2-90B-Vision (Grattafiori et al., 2024) 35.82 16.88 96.89 99.24 91.78
Llama-3.2-11B-Vision (Grattafiori et al., 2024) 38.81 6.49 59.41 52.49 21.21

Qwen2.5-VL-72B (Bai et al., 2023) 80.60 46.75 95.45 93.35 73.79
Qwen2.5-VL-32B (Bai et al., 2023) 82.09 41.56 89.06 87.24 66.31
Qwen2.5-VL-7B (Bai et al., 2023) 67.16 31.17 82.14 77.76 37.30

Gemma-3-27B-IT (Team et al., 2025) 83.58 36.36 92.50 86.72 58.82

Table 1: Model performance comparison across two tasks in ProcVQA: VQA (Single-Hop vs. Multi-Hop accuracy)
and VDE (Accuracy by total (node + link) structural complexity levels: Low, Medium, High). Models are classified
into proprietary and open-source categories. bold underlined (best), bold (second-best).

and E.3).
Even frontier models exhibit this pattern. For

Gemini-2.5-Pro-Thinking, hallucinations increase
18.5× from low to high node density (0.4% →
7.4%) and 33.6× for edge density (0.3% →
10.1%). Claude-3.7-Sonnet shows even larger
jumps (26.3× for nodes, 51.7× for edges), while
the increment for GPT-4.1 is 6.4× and 9.3×, re-
spectively. These results indicate that edges are the
primary source of difficulty.

For several models, high-density visualizations
trigger extreme hallucination: Llama-3.2-11B-
Vision hallucinates on 53.5% of high-node and
68.1% of high-edge visualizations, while Qwen-
VL-Plus exceeds 50% in both settings. We provide
further insight into hallucination modes, such as
fusing multiple nodes in app. G.2.

Visual Structure affects VDE Performance.
VLM performance on VDE tasks varies substan-
tially across visualization structures (tab. E.5).

Graphs emerge as the most challenging visual-
ization type for most models, often yielding lowest
precision and recall across visual structures. For
instance, Gemini-2.5-Pro-Thinking shows 8% ac-
curacy drop for graphs compared to trees and linear
sequences, while precision loss for both GPT mod-
els (4o, 4.1) is >17% . Similar trends appear across
most model families.

In contrast, models achieve high precision on
linear sequence clusters despite their larger average

node count (40.53 compared to 11.88 for trees and
13.17 for graphs; tab. A.1). This counter-intuitive
finding suggests that the structural simplicity (lin-
ear, non-branching chains) may be a stronger pre-
dictor of VDE performance than raw element count.
In other words, edges in branching structures ap-
pear to be a weak point for VLMs.

Impact of Visual Structures Varies across VQA
Tasks. As shown in fig. 2 and tab. 1, model
performance drops 19–56% when moving from
single-hop to multi-hop reasoning, with the extent
of drop depending strongly on the underlying
visualization structure.

Models consistently struggle with unanswer-
able questions on linear sequence clusters.
Seven models fail completely (0% accuracy;
tab. E.7), typically defaulting to spurious nu-
meric guesses instead of outputting ‘indeterminate’
(app. G.3). Even Gemini-2.5-Pro-Thinking, one of
the strongest models overall, achieves only 60% ac-
curacy, compared to ≥88.89% on trees and graphs.
Gemini-2.5-Flash stands out by reaching perfect
accuracy across all structures.

Value aggregation on graphs is another challeng-
ing task-structure combination: all non-Gemini
models score below 20% accuracy, while Gemini-
2.5-Pro-Thinking peaks at just 38.46%. This task
requires tracing and summing values across mul-
tiple, distant nodes in non-linear structures with
complex parent–child relationships. We analyze

common failure modes in app. G.1, with detailed
categorization (tab. G.1) and examples (tabs. G.2
to G.7). In contrast, value extraction tasks are
consistently easy across all structures: six models
reach perfect (100%) accuracy (tab. E.6), indicat-
ing that locating and reading numeric values is well
within current VLM capabilities.

Trees, in general, emerge as the most tractable
structure: 12 models, including mid-sized Gemma-
3-27B-IT, achieve perfect retrieval accuracy
(tab. E.7). Sequential reasoning in trees is also well-
handled, with eight models (including all Gemini
variants) reaching perfect accuracy. In contrast,
no model achieves perfect accuracy for sequential
reasoning in graphs or linear sequence clusters.

Parallels and Divergences between Human and
Machine Capabilities. To contextualize our find-
ings, we compare VLM performance with a human
baseline, based on prescreening test results on 301
participants from Zinat et al. (2023), which uses
the same visualization generation pipeline as our
benchmark (app. F). Notably, only 63.8% passed
the visual literacy prescreening test, highlighting
that process visualizations present significant cog-
nitive challenges even for humans. Comparing
task-specific performance reveals that both humans
and VLMs find value extraction to be the most
accessible task, and value aggregation to be the
most challenging (tab. F.1). In sequential reason-
ing tasks, the best-performing model substantially
outperforms humans.

Performance Divergence on VQA and VDE for
Llama-3.2-90B-Vision. Our evaluation reveals
a performance divergence that challenges assump-
tions about the relationship between data extraction
and reasoning capabilities. Models capable of ac-
curately identifying and extracting visual elements
and their relationships should inherently perform
well when answering questions that require rea-
soning over those same elements. However, our
findings demonstrate that these capabilities can be
surprisingly decoupled in certain models.

Llama-3.2-90B-Vision stands out for its re-
silience to increasing density, maintaining high
VDE accuracy across all levels (low: 96.89%,
medium: 99.24%, high: 91.78%; tab. 1). Although
hallucination rates rise with density (7.0% at high
node, 9.6% at high edge), the growth is modest
(3.3× and 5.3×) compared to other models, with
only 106 hallucinations overall (tab. E.1). Notably,
it is the only model to achieve ≥90% precision and

recall consistently across all structures (tab. E.5).

However, the same model performs poorly on
VQA tasks, reaching just 35.82% accuracy for
single-hop, and 16.88% for multi-hop reasoning
(tab. 1). This gap between VDE and VQA is unique
among the models we studied.

Upon closer inspection, we found part of the per-
formance drop could be attributed to instruction-
following failures. For instance, LLaMA-3.2-11B-
Vision achieved near-zero accuracy on single-hop
(0%) and multi-hop (1.3%) tasks, because it con-
sistently failed to comply with the specified output
format requirements. It repeatedly produced mul-
tiple <answer> tags instead of the required format
<answer>X</answer>. After manually extracting
answers, its adjusted accuracy rose to 21.53%, still
far below other models but notably higher than the
near-zero automated scores. Additional cases of in-
struction nonconformance are detailed in app. G.3.

4 Conclusion

ProcVQA is the first systematic benchmark for eval-
uating Vision-Language Models on mined process
visualizations. A central contribution of our work
is the analysis of the influence of structural density,
structure type, and task category, which uncovers
degradation patterns obscured in traditional bench-
marks. We find that edge density has a stronger
effect on performance than node density. Graphs
are the most challenging structure type for most
models, while trees are the most tractable. Value
extraction task is consistently manageable across
all structures, while all models perform poorly on
value aggregation task on graphs These findings
demonstrate that VLM performance depends on
the interplay between structural density, structure
type, and reasoning complexity.

We also observe that strong extraction capability
may not translate to strong reasoning capability,
and a wide variation in instruction-following ability,
underscoring the need to consider extraction power,
reasoning ability, and instruction adherence when
deploying models (app. G.3).

Future work should focus on improving multi-
hop reasoning, where models must perform a series
of operations before reaching a solution. Tasks
such as tracing values across multiple paths and
aggregating them (app. G.1) remain challenging
even for frontier models.

5 Limitations

While we have conducted evaluations across three
different visualization types across eight domains,
our benchmark should be considered as comple-
mentary to existing chart benchmarks (Singh et al.,
2024; Zhang et al., 2024), rather than a comprehen-
sive standalone evaluation (app. C).

It is important to note that the specific datasets
and questions in the human study (app. F) dif-
fer from our benchmark despite using the same
visualization generation pipeline. Nevertheless,
these relative performance patterns across task
types provide valuable insights into the compar-
ative strengths and weaknesses of how human and
machines interpret process visualizations.

Our standardized visual style eliminates con-
founding stylistic variation, but may not reflect per-
formance on charts with diverse visual encodings
found in real-world settings. This standardization
was a deliberate methodological choice to isolate
the impact of structural complexity on model per-
formance. Without established metrics to quantify
or control for complexity introduced by visual di-
versity, this approach provides a clean experimental
setting to measure VLM performance strictly as a
function of structural complexity.

A key challenge is extending these findings be-
yond process visualizations requires robust ways
of quantifying structural complexity across chart
types. We call upon the visualization community
to develop such systematic measures that enable
more generalizable evaluation.

References
Sequence summary repository. https://github.com/
hdi-umd/SequenceSummary. Accessed: 2025-09-
16.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

Tony Allard, Paul Alvino, Leslie Shing, Allan Wollaber,
and Joseph Yuen. 2019. A dataset to facilitate auto-
mated workflow analysis. PLOS ONE, 14(2):1–22.

Anthropic. 2024. Claude 3 model family: Opus, sonnet,
haiku. https://www.anthropic.com/. Released
March 2024.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,

and Jingren Zhou. 2023. Qwen-vl: A versatile vision-
language model for understanding, localization. Text
Reading, and Beyond, 2.

Elizabeth A. Carter, Randall S. Burd, Megan Monroe,
Catherine Plaisant, and Ben Shneiderman. 2013. Us-
ing eventflow to analyze task performance during
trauma resuscitation.

Yuanzhe Chen, Panpan Xu, and Liu Ren. 2017. Se-
quence synopsis: Optimize visual summary of tem-
poral event data. IEEE transactions on visualization
and computer graphics, 24(1):45–55.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 1 others. 2024. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783.

Yucheng Han, Chi Zhang, Xin Chen, Xu Yang,
Zhibin Wang, Gang Yu, Bin Fu, and Hanwang
Zhang. 2023. Chartllama: A multimodal llm for
chart understanding and generation. arXiv preprint
arXiv:2311.16483.

Mengdie Hu, Krist Wongsuphasawat, and John Stasko.
2016. Visualizing social media content with senten-
tree. IEEE transactions on visualization and com-
puter graphics, 23(1):621–630.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan,
and Geoffrey E Hinton. 1991. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87.

Shankar Kantharaj, Xuan Long Do, Rixie Tiffany
Leong, Jia Qing Tan, Enamul Hoque, and Shafiq Joty.
2022a. Opencqa: Open-ended question answering
with charts. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Process-
ing, pages 11817–11837.

Shankar Kantharaj, Rixie Tiffany Leong, Xiang Lin,
Ahmed Masry, Megh Thakkar, Enamul Hoque, and
Shafiq Joty. 2022b. Chart-to-text: A large-scale
benchmark for chart summarization. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 4005–4023, Dublin, Ireland. Association for
Computational Linguistics.

Bum Chul Kwon, Vibha Anand, Kristen A. Severson,
Soumya Ghosh, Zhaonan Sun, Brigitte I. Frohnert,
Markus Lundgren, and Kenney Ng. 2021. Dpvis: Vi-
sual analytics with hidden markov models for disease
progression pathways. IEEE Transactions on Visual-
ization and Computer Graphics, 27(9):3685–3700.

Fuxiao Liu, Xiaoyang Wang, Wenlin Yao, Jianshu Chen,
Kaiqiang Song, Sangwoo Cho, Yaser Yacoob, and
Dong Yu. 2024. MMC: Advancing multimodal chart
understanding with large-scale instruction tuning. In
Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 1287–1310, Mexico

https://github.com/hdi-umd/SequenceSummary
https://github.com/hdi-umd/SequenceSummary
https://doi.org/10.1371/journal.pone.0211486
https://doi.org/10.1371/journal.pone.0211486
https://www.anthropic.com/
http://www.cs.umd.edu/hcil/trs/2013-19/2013-19.pdf
http://www.cs.umd.edu/hcil/trs/2013-19/2013-19.pdf
http://www.cs.umd.edu/hcil/trs/2013-19/2013-19.pdf
https://doi.org/10.18653/v1/2022.acl-long.277
https://doi.org/10.18653/v1/2022.acl-long.277
https://doi.org/10.1109/TVCG.2020.2985689
https://doi.org/10.1109/TVCG.2020.2985689
https://doi.org/10.1109/TVCG.2020.2985689
https://doi.org/10.18653/v1/2024.naacl-long.70
https://doi.org/10.18653/v1/2024.naacl-long.70

City, Mexico. Association for Computational Lin-
guistics.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023a. Visual instruction tuning. Advances
in neural information processing systems, 36:34892–
34916.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023b. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM computing surveys, 55(9):1–35.

Zhicheng Liu, Bernard Kerr, Mira Dontcheva, Justin
Grover, Matthew Hoffman, and Alan Wilson. 2017.
Coreflow: Extracting and visualizing branching pat-
terns from event sequences. In Computer Graphics
Forum, volume 36, pages 527–538. Wiley Online
Library.

Jessica Magallanes, Tony Stone, Paul D Morris,
Suzanne Mason, Steven Wood, and Maria-Cruz Villa-
Uriol. 2022. Sequen-c: A multilevel overview of
temporal event sequences. IEEE Transactions on Vi-
sualization and Computer Graphics, 28(1):901–911.

Ahmed Masry, Mohammed Saidul Islam, Mahir Ahmed,
Aayush Bajaj, Firoz Kabir, Aaryaman Kartha,
Md Tahmid Rahman Laskar, Mizanur Rahman,
Shadikur Rahman, Mehrad Shahmohammadi, Megh
Thakkar, Md Rizwan Parvez, Enamul Hoque, and
Shafiq Joty. 2025. Chartqapro: A more diverse and
challenging benchmark for chart question answering.
Preprint, arXiv:2504.05506.

Ahmed Masry, Parsa Kavehzadeh, Xuan Long Do, Ena-
mul Hoque, and Shafiq Joty. 2023. UniChart: A
universal vision-language pretrained model for chart
comprehension and reasoning. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 14662–14684, Singa-
pore. Association for Computational Linguistics.

Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty,
and Enamul Hoque. 2022. Chartqa: A benchmark
for question answering about charts with visual and
logical reasoning. arXiv preprint arXiv:2203.10244.

AI Meta. 2025. The llama 4 herd: The beginning
of a new era of natively multimodal ai innova-
tion. https://ai. meta. com/blog/llama-4-multimodal-
intelligence/, checked on, 4(7):2025.

Nitesh Methani, Pritha Ganguly, Mitesh M Khapra, and
Pratyush Kumar. 2020. Plotqa: Reasoning over sci-
entific plots. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision,
pages 1527–1536.

Megan Monroe. Basketball play-by-play analysis using
eventflow.

OWID. 2025. Our world in data. https://
ourworldindata.org/. Accessed: 2025-09-15.

Huitong Pan, Qi Zhang, Cornelia Caragea, Ed-
uard Dragut, and Longin Jan Latecki. 2024.
Flowlearn: Evaluating large vision-language mod-
els on flowchart understanding. arXiv preprint
arXiv:2407.05183.

Pew Research Center. 2025. Pew research cen-
ter. https://www.pewresearch.org/. Accessed:
2025-09-15.

Catherine Plaisant. Eventflow demo (short for talks) -
visual analytics for temporal event data.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. 2017. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538.

Shubhankar Singh, Purvi Chaurasia, Yerram Varun,
Pranshu Pandya, Vatsal Gupta, Vivek Gupta, and
Dan Roth. 2024. Flowvqa: Mapping multimodal
logic in visual question answering with flowcharts.
arXiv preprint arXiv:2406.19237.

Tableau Public. 2025. Tableau public. https://
public.tableau.com/. Accessed: 2025-09-15.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, Katie Mil-
lican, and 1 others. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya
Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin,
Tatiana Matejovicova, Alexandre Ramé, Morgane
Rivière, and 1 others. 2025. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786.

Zirui Wang, Mengzhou Xia, Luxi He, Howard Chen,
Yitao Liu, Richard Zhu, Kaiqu Liang, Xindi Wu,
Haotian Liu, Sadhika Malladi, and 1 others. 2024.
Charxiv: Charting gaps in realistic chart understand-
ing in multimodal llms. Advances in Neural Informa-
tion Processing Systems, 37:113569–113697.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. Advances
in neural information processing systems, 35:24824–
24837.

Mark A. Whiting, Kris Cook, R. Jordan Crouser, John
Fallon, Georges Grinstein, Jereme Haack, Cindy Hen-
derson, Kristen Liggett, Diane Staheli, Jana Stras-
burg, Jerry Tagestad, and Carrie Varley. 2017. Vast
challenge 2017: Mystery at the wildlife preserve. In
2017 IEEE Conference on Visual Analytics Science
and Technology (VAST), pages 173–178.

Renqiu Xia, Bo Zhang, Hancheng Ye, Xiangchao
Yan, Qi Liu, Hongbin Zhou, Zijun Chen, Peng Ye,
Min Dou, Botian Shi, and 1 others. 2024. Chartx

https://doi.org/10.1109/TVCG.2021.3114868
https://doi.org/10.1109/TVCG.2021.3114868
https://arxiv.org/abs/2504.05506
https://arxiv.org/abs/2504.05506
https://doi.org/10.18653/v1/2023.emnlp-main.906
https://doi.org/10.18653/v1/2023.emnlp-main.906
https://doi.org/10.18653/v1/2023.emnlp-main.906
https://vimeo.com/66965934?embedded=true&source=vimeo_logo&owner=5782051
https://vimeo.com/66965934?embedded=true&source=vimeo_logo&owner=5782051
https://ourworldindata.org/
https://ourworldindata.org/
https://www.pewresearch.org/
https://youtu.be/fLe1GawokXc?t=87
https://youtu.be/fLe1GawokXc?t=87
https://public.tableau.com/
https://public.tableau.com/
https://doi.org/10.1109/VAST.2017.8585503
https://doi.org/10.1109/VAST.2017.8585503

& chartvlm: A versatile benchmark and founda-
tion model for complicated chart reasoning. arXiv
preprint arXiv:2402.12185.

Yongqin Xian, Bernt Schiele, and Zeynep Akata. 2017.
Zero-shot learning-the good, the bad and the ugly.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4582–4591.

Zhengzhuo Xu, Sinan Du, Yiyan Qi, Chengjin Xu, Chun
Yuan, and Jian Guo. 2023. Chartbench: A bench-
mark for complex visual reasoning in charts. arXiv
preprint arXiv:2312.15915.

Dingqi Yang, Daqing Zhang, Vincent W. Zheng, and
Zhiyong Yu. 2015. Modeling user activity preference
by leveraging user spatial temporal characteristics in
lbsns. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 45(1):129–142.

Xinyu Zhang, Lingling Zhang, Yanrui Wu, Muye
Huang, Wenjun Wu, Bo Li, Shaowei Wang, and Jun
Liu. 2024. Diagramqg: A dataset for generating
concept-focused questions from diagrams. arXiv e-
prints, pages arXiv–2411.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and
Mohamed Elhoseiny. 2023. Minigpt-4: Enhancing
vision-language understanding with advanced large
language models. arXiv preprint arXiv:2304.10592.

Kazi Tasnim Zinat, Jinhua Yang, Arjun Gandhi, Nistha
Mitra, and Zhicheng Liu. 2023. A comparative eval-
uation of visual summarization techniques for event
sequences. Computer Graphics Forum, 42(3):173–
185.

A ProcVQA: Curation, Generation,
Visualization Types and Mining
Algorithms

A.1 Process Dataset Curation

To build a representative benchmark, we curated
eight real-world process datasets drawn from di-
verse domains. We provide some examples of
datasets and domains below:
• Healthcare. The Pediatric Trauma dataset

(Carter et al., 2013) records the sequence of
trauma-response events, while the Emergency
dataset (Plaisant) captures patient movement
through a hospital.

• Sports. A play-by-play event log of the UMD
vs. UNC basketball game (Monroe) provides
fine-grained temporal actions on the court.

• Mobility. We include the VAST Challenge 2017
nature-preserve vehicle-movement data (Whit-
ing et al., 2017) and a large-scale Foursquare
check-in corpus that traces location trajectories
(Yang et al., 2015).

• Software Engineering. A workflow dataset
of bug-fix activities in an open-source
project (Allard et al., 2019) represents
software-development processes.

A.2 Process Mining Algorithms

In this section, we discuss the mining algorithms
associated with the visualizations.
Trees

Tree-based visualizations were mined by an al-
gorithm proposed in Liu et al., 2017, which uses
a rank-divide-trim approach for extracting process
patterns. Events are initially ranked using a pre-
defined metric, such as frequency of occurrence
or average index position across process entities.
The top-ranked event is included in the process
summary, and the sequences are partitioned into
two groups based on whether they contain the top-
ranked event. The sequences containing the top-
ranked event are then trimmed. These operations
are recursively applied to the resulting groups un-
til either all have been processed or a predefined
minimum support threshold is reached.
Graphs

Mined by algorithm proposed in Hu et al., 2016,
which also uses a rank and divide approach for
pattern extraction. However, instead of pruning the
sub-sequences up to the first occurrence of the top-
ranked event, extracts frequent patterns above the
minimum support threshold in these sub-sequences.
Given the same minimum support, typically mines
more events and patterns than Liu et al., 2017 due
to difference in extraction strategy.
Linear Sequence Clusters

Proposed by Chen et al., 2017, applies minimum
description length principle to cluster sequences
and identify representative sequential patterns for
each cluster. Performs iterative merging to find
clusters and associated patterns, while optimizing
for the number of generated patterns and the edits
required to obtain the original dataset from the
patterns.

A.3 Visualization Types

Our benchmark covers three node–link variants of
process pattern visualizations:

Trees Hierarchical structures in which each node
has a single parent and zero or more children,
yielding strictly branching paths (Liu et al.,
2017).

https://doi.org/10.1109/TSMC.2014.2327053
https://doi.org/10.1109/TSMC.2014.2327053
https://doi.org/10.1109/TSMC.2014.2327053
https://doi.org/10.1111/cgf.14821
https://doi.org/10.1111/cgf.14821
https://doi.org/10.1111/cgf.14821

Graphs Directed acyclic graphs that allow nodes
to have multiple parents, capturing convergent
paths and complex precedence relations (Hu
et al., 2016).

Linear sequence clusters Sets of linear event se-
quences clustered to expose representative
temporal flows and recurring motifs (Chen
et al., 2017).

A.4 Visualization and Ground Truth
Generation

All charts were generated with an open-source
visualization pipeline that mines three distinct
process-patterns (described in app. A.2) and ren-
ders them in the three above visualization formats
using a uniform visual style (Zinat et al., 2023).

Our benchmark includes 118 visualizations,
which is smaller compared to some general chart
benchmarks. This stems primarily from the scarcity
of openly available process datasets, as many or-
ganizational process logs contain sensitive infor-
mation. However, our diverse domain coverage
(spanning healthcare, mobility, sports, and soft-
ware engineering) helps mitigate potential biases,
and the open-source pipeline (under MIT License)
(Seq) enables future dataset expansion as more pro-
cess data becomes available.

The mined patterns are outputted in JSON for-
mat, with exact number and event information. We
use these files to construct ground truths for the
Visual Data Extraction (VDE) task. Standardizing
color palettes, typography, and glyphs eliminates
confounding stylistic variation and allows us to
isolate structural density effects.

Tab. A.1 provides an overview of the count and
node and edge distribution of each visualization
type in the corpus.

B Evaluation Setup

B.1 Evaluation Protocol
Zero-shot Evaluation

Our experimental setup is designed to evaluate
VLM performance on process visualizations in a
consistent and controlled manner. As described in
section 3, we adopt a strictly zero-shot evaluation
approach for all models, using type-specific system
prompts without any in-context examples. This de-
sign ensures fair comparisons across all 21 models
we evaluate, avoids biasing results, and accommo-
dates models that accept only a single image per
query, such as Llama-3.2. The zero-shot setting

also establishes a pure baseline for visualization un-
derstanding and reflects real-world scenarios where
users encounter novel visualization types.
Prompt Design

For each of the three visualization types: trees,
graphs, and linear sequence clusters, we developed
specialized system prompts describing the seman-
tics of each chart type (examples in app. D). These
prompts provide clear instructions about the visu-
alization without revealing task-specific content or
answers.

To further support fair evaluation, our prompts
incorporate chain-of-thought (CoT) reasoning. The
prompts require models to describe their thought
process and calculations step-by=step, and to in-
clude reasoning within an XML tag <reasoning>,
thereby making explicit how they analyzed the dia-
gram before answering. This follows established
CoT prompting principles (Wei et al., 2022). Our
prompt design balances simplicity with effective-
ness: detailed enough to enable zero-shot under-
standing of specialized chart types (by describing
the visual channels used), while structured to elicit
step-by-step reasoning.

Although prompt engineering (Liu et al., 2023b)
can sometimes improve performance, our goal is
not to maximize model scores but to establish a
transparent baseline and to highlight the limitations
of existing foundation models.

We believe that the combination of a zero-shot
setting with reasoning-enabled prompts provides
a solid foundation for future research and model
improvements.

B.2 Task Metrics
We discuss the task metrics for VDE and VQA
tasks in app. B.2.1 and app. B.2.2 respectively.

B.2.1 VDE
For the extraction task, we measure success using
two metrics:

1. Precision: The proportion of correctly iden-
tified relationship tuples among all extracted
tuples:

Precision =
|Correct Tuples|

|Total Extracted Tuples|
(1)

This metric captures the model’s ability to
avoid hallucinating relationships not present
in the visual input.

Vis Type Count Metric Mean Median Min–Max Std

Trees 34
Nodes 11.88 10.00 4–24 5.98
Links 10.88 9.00 3–23 5.98

Unique Nodes 5.74 6.00 3–10 2.11

Graphs 46
Nodes 13.17 10.50 4–36 7.72
Links 14.63 11.00 3–46 10.51

Unique Nodes 6.48 7.00 3–14 2.47

Linear Sequence Clusters 38
Nodes 40.53 33.00 5–106 23.54
Links 5.76 5.00 1–25 3.74

Unique Nodes 10.55 10.50 5–32 4.09

Overall 118
Nodes 21.61 14.00 4–106 19.49
Links 10.69 8.00 1–46 8.43

Unique Nodes 7.58 7.00 3–32 3.64

Table A.1: Summary statistics for each process visualization type in ProcVQA

Vis Type Nodes Density (Count) Nodes Density (%)
Low Medium High Low Medium High

Trees 19 7 8 55.9 20.6 23.5
Graphs 23 13 10 50.0 28.3 21.7

Linear Sequence Clusters 20 11 7 52.6 28.9 18.4

Overall 62 31 25 52.5 26.3 21.2

Vis Type Links Density (Count) Links Density (%)
Low Medium High Low Medium High

Tree-based Structures 19 7 8 55.9 20.6 23.5
Graph-based Networks 25 13 8 54.3 28.3 17.4

Linear Sequence Clusters 22 13 3 57.9 34.2 7.9

Overall 66 33 19 55.9 28.0 16.1

Table A.2: Distribution of node and link density tiers (low, medium, high) across visualization types.

Task Type Categories Size Total

VQA
Single Value Extraction 16

144Sequential Reasoning 51

Multi Value Aggregation 54
Unanswerable 23

Task Component Density #Chart Total

VDE

Node
Low 62

118

Medium 31
High 25

Link
Low 66

Medium 33
High 19

Overall
Low 56

Medium 37
High 25

Table A.3: Two evaluation tasks in ProcVQA: VQA
tasks are divided by reasoning complexity into single-
hop and multi-hop categories. VDE tasks are classi-
fied by structural density (Low-Medium-High) based on
node count, link count, and overall structural density

2. Recall: The proportion of ground truth rela-
tionship tuples successfully extracted:

Recall =
|Correct Tuples|

|Ground Truth Tuples|
(2)

This metric measures completeness of cross-
modal transfer—how effectively the model

captures all relevant visual information in its
linguistic output. Recall is presented as accu-
racy in main paper.

3. Hallucination Rate: The proportion of ex-
tracted events that are hallucinated:

Hallucination Rate =
|Hallucinated Tuples|
|Total Extracted Tuples|

× 100

= 1− P

where Extracted is the total number of tuples
produced by the model and Hallucinated is
the number of spurious tuples among them.

We further analyze these metrics across visual-
ization types and density levels to identify specific
visual structures that challenge model performance.

B.2.2 VQA
For the VQA task, we evaluate accuracy overall
and across task types:

1. Overall Accuracy: The proportion of ques-
tions answered correctly across all question
types:

Accuracy =
|Correct Answers|
|Total Questions|

(3)

2. Category-Specific Accuracy: Performance
broken down by question category (value ex-
traction, sequential reasoning, value aggrega-
tion, negative cases)

B.3 Model Selection
For evaluation across a comprehensive spectrum
of current Vision-Language Models (VLMs), we
selected a set of 21 models representing differ-
ent architectures, parameter scales, and training
paradigms. Our selection includes both closed-
source frontier models and open-source alterna-
tives.

B.3.1 Closed-Source Models
We evaluated 12 proprietary models across four
model families.

• OpenAI: GPT-4.1, GPT-4o

• Anthropic: Claude-3.7-Sonnet, Claude-3.5-
Sonnet, Claude-3.0-Haiku, and Claude-3.5-
Haiku

• Google: Gemini-2.5-Pro-Thinking, Gemini-
2.5-Pro, Gemini-2.5-Flash , and Gemini-2.0-
Flash

• Qwen: Qwen-VL-Max, Qwen-VL-Plus and
QVQ-Max

B.3.2 Open-Source Models
We evaluated 9 open-source VLMs of varying sizes
and architectures across three model families:

• LLaMA: LLama-4-Maverick-17B, LLama-
4-Scout-17B, LLama3.2-90B-Vision, and
LLama-3.2-11B-Vision

• Qwen (Open-Source): Qwen2.5-VL-72B,
Qwen2.5-VL-32B, and Qwen2.5-VL-7B

• Google (Open-Source): Gemma3-27B-IT

C ProcVQA in the Context of Previous
Benchmarks

Several prior datasets target visual reasoning with
flowcharts and related diagram types, including
FlowLearn (Pan et al., 2024), FlowVQA (Singh
et al., 2024), and DiagramQG (Zhang et al., 2024).
Flowcharts and process visualizations, though vi-
sually similar, serve fundamentally different pur-
poses. Therefore, ProcVQA differ from the setting
of prevoious work in several key ways.

Quantitative Edge Semantics. ProcVQA fo-
cuses on process visualizations mined from real-
world event sequences, where edges carry quan-
titative weights indicating transition frequencies.
In contrast, flowcharts in FlowLearn (Pan et al.,
2024) and FlowVQA(Singh et al., 2024) represent
prescriptive paths or binary decisions (e.g., yes/no).

Structural Differences. Process visualizations
often contain unique structures such as lin-
ear sequence clusters (fig. 1, right), which are
not captured by traditional flowchart datasets.
ProcVQA incorporates these structures.

Aggregation Reasoning. Our benchmark intro-
duces multi-hop questions that require aggregat-
ing values across multiple paths while preserving
chronological order. This is distinct from flowchart
reasoning, which primarily involves tracing logical
paths.

Deterministic Evaluation. Unlike DiagramQG
(Zhang et al., 2024), which relies on open-ended
questions evaluated with similarity metrics (e.g.,
BLEU), ProcVQA emphasizes deterministic an-
swers (numeric or “indeterminate”), allowing exact
accuracy computation.

Controlled Visual Design. Finally,
ProcVQA minimizes stylistic variation (color
schemes, fonts, glyphs), enabling a more principled
evaluation of structural density in VLMs. This
controlled design isolates identifying performance
challenges due to structural density that may
otherwise be confounded by visual diversity.

Overall, ProcVQA complements existing
flowchart-based benchmarks by addressing a dis-
tinct dimension of visual reasoning: understand-
ing quantitative process patterns derived from real-
world event data.

D Prompt Templates for VQA & VDE
Tasks

Examples of the VQA task on the tree, graph and
linear sequences diagram are provided in figs. D.1
to D.3 respectively. Example of the VDE task on
trees and graphs (extracting source node, target
node and count) is provided in fig. D.4 and on linear
structures (extracting node and count) is provided
in fig. D.5.

E Results

We describe the VQA and VDE Task Results here.

Example 1: Visual Question Answering on Trees

System Prompt

You are a good assistant who can retrieve information and provide answers from node-link diagram visualizations.

Context You are presented with a node-link diagram visualization that shows sequences of events:
- Each event is represented by a node with a label
- Events are connected by directed links forming pathways
- The vertical position of nodes indicates chronological order (top to bottom)
- Link widths are proportional to the number of sequences following that path
- Numeric labels next to each link show the exact count of sequences

Instructions
- Carefully examine all nodes, links, labels, and their corresponding values
- Track complete pathways through the diagram to understand event sequences
- Answer **solely** based on what is explicitly shown in the visualization
- If the answer **cannot be determined** from the visualization, respond with 'indeterminate'

Response Format
1. Identify the relevant elements in the visualization that inform your answer
2. Describe your thought process and calculations clearly step-by-step in XML tag <reasoning>, showing how you analyzed

the diagram
3. After your detailed explanation, provide your final answer in the following format: <answer>X</answer> where X is your

direct answer or 'indeterminate'

Value Extraction (Single-hop)

User Prompt: Analyze the node-link diagram shown
in the figure and answer the following question.
Question
How many Rebounds were made by UMD Offense?

Sequential Reasoning (Single-hop)

User Prompt: Analyze the node-link diagram shown
in the figure and answer the following question.
Question
How many times did UMD Offense transition from
UNC Offense?

Unanswerable (Multi-hop)

User Prompt: Analyze the node-link diagram shown
in the figure and answer the following question.
Question
How many shots were missed immediately after
UMD Offense?

Value Aggregation (Multi-hop)

User Prompt: Analyze the node-link diagram shown
in the figure and answer the following question.
Question
How many times did UMD Offense not transition to
a Rebound?

Figure D.1: Example of four types of VQA on Trees

Example 2: Visual Question Answering on (b) Graphs

System Prompt

You are a good assistant who can retrieve information and provide answers from node-link diagram visualizations.

Context You are presented with a node-link diagram visualization that shows sequences of events:
- Each event is represented by a node with a label
- Events are connected by directed links forming pathways
- The vertical position of nodes indicates chronological order (top to bottom)
- Link widths are proportional to the number of sequences following that path
- Numeric labels next to each link show the exact count of sequences

Instructions
- Carefully examine all nodes, links, labels, and their corresponding values
- Track complete pathways through the diagram to understand event sequences
- Answer **solely** based on what is explicitly shown in the visualization
- If the answer **cannot be determined** from the visualization, respond with 'indeterminate'

Response Format
1. Identify the relevant elements in the visualization that inform your answer
2. Describe your thought process and calculations clearly step-by-step in XML tag <reasoning>, showing how you analyzed

the diagram
3. After your detailed explanation, provide your final answer in the following format: <answer>X</answer> where X is your

direct answer or 'indeterminate'

Value Extraction (Single-hop)

User Prompt: Analyze the node-link diagram shown
in the figure and answer the following question.
Question
How many total rebounds are there in the match?

Sequential Reasoning (Single-hop)

User Prompt: Analyze the node-link diagram shown
in the figure and answer the following question.
Question
How many made shots were after UNC Offense but
before UMD offense?

Unanswerable (Multi-hop)

User Prompt: Analyze the node-link diagram shown
in the figure and answer the following question.
Question
How many fouls were made after UNC Offense and
before UMD offense?

Value Aggregation (Multi-hop)

User Prompt: Analyze the node-link diagram shown
in the figure and answer the following question.
Question
How many times did UMD Offense transition from
UNC Offense?

Figure D.2: Example of four types of VQA on Graphs

Example 3: Visual Question Answering on (c) Linear Sequence Clusters

System Prompt

You are a good assistant who can retrieve information and provide answers from node-link diagram visualizations.

Context You are presented with a node-link diagram visualization that shows sequences of events:
- Each event is represented by a node with a label
- Events are connected by directed links forming pathways
- The vertical position of nodes indicates chronological order (top to bottom)
- Link widths are proportional to the number of sequences following that path
- Numeric labels next to each node show the exact count of sequences

Instructions
- Carefully examine all nodes, links, labels, and their corresponding values
- Track complete pathways through the diagram to understand event sequences
- Answer **solely** based on what is explicitly shown in the visualization
- If the answer **cannot be determined** from the visualization, respond with 'indeterminate'

Response Format
1. Identify the relevant elements in the visualization that inform your answer
2. Describe your thought process and calculations clearly step-by-step in XML tag <reasoning>, showing how you analyzed

the diagram
3. After your detailed explanation, provide your final answer in the following format: <answer>X</answer> where X is your

direct answer or 'indeterminate'

Sequential Reasoning (Single-hop)

User Prompt: Analyze the node-link diagram shown
in the figure and answer the following question.
Question
How many times did a jump ball occur after UNC
Offense?

Unanswerable (Multi-hop)

User Prompt: Analyze the node-link diagram shown
in the figure and answer the following question.
Question
How many free throws were made by UMD Offense?

Value Aggregation (Multi-hop)

User Prompt: Analyze the node-link diagram shown
in the figure and answer the following question.
Question
How many total missed shots occur after UNC Of-
fense but before UMD Offense?

Figure D.3: Example of four types of VQA on Linear Sequence Clusters

Example 4: Visual Data Extraction on Trees and Graphs

System Prompt

You are a good assistant who can retrieve information and provide answers from node-link diagram visualizations.

CONTEXT:

You are presented with a node-link diagram visualization that shows sequences of events:
- Each event is represented by a node with a label
- Events are connected by directed links forming pathways
- The vertical position of nodes indicates chronological order (top to bottom)
- Link widths are proportional to the number of sequences following that path
- Numeric labels next to each link show the exact count of sequences

INSTRUCTIONS:
1. Extract ALL visible connections as triplets: [<Source>, <Target>, <Count>]
2. For each connection, identify:
- The exact source node label (<Source>)
- The exact target node label (<Target>)
- The numeric value shown on that connection (<Count>)
3. Record each duplicate [<Source>, <Target>, <Count>] triplets separately.
4. Ensure all <Count> are integers, not strings.
5. **Do not include any explanations or additional text.**
6. Answer solely based on what is explicitly shown in the visualization

EXAMPLE FORMAT:
[
[<Source>, <Target>, <Count>],
[<Source>, <Target>, <Count>],
[<Source>, <Target>, <Count>],
...
]
IMPORTANT: **Your entire response must be a parseable JSON object and nothing else.**

User Prompt

Examine the node-link diagram in the figure and extract all connections as triplets. For each connection, provide the source
node label, target node label, and the count value shown on that link in the format [<Source>, <Target>, <Count>].

Figure D.4: Example of VDE on Trees and Graphs

Example 5: Visual Data Extraction on Linear Sequence Clusters

System Prompt

You are a good assistant who can retrieve information and provide answers from node-link diagram visualizations.

CONTEXT:

You are presented with a node-link diagram visualization that shows sequences of events:
- Each event is represented by a node with a label
- Events are connected by directed links forming pathways
- The vertical position of nodes indicates chronological order (top to bottom)
- Link widths are proportional to the number of sequences following that path
- Numeric labels next to each node show the exact count of sequences

INSTRUCTIONS:
1. Extract ALL visible connections as pairs: [<Source>, <Count>]
2. For each connection, identify:
- The exact node label (<Source>)
- The numeric value shown on that connection (<Count>)

3. Record each duplicate [<Source>, <Count>] pairs separately.
4. Ensure all <Count> are integers, not strings.
5. **Do not include any explanations or additional text.**
6. Answer solely based on what is explicitly shown in the visualization

EXAMPLE FORMAT:
[
[<Source>, <Count>],
[<Source>, <Count>],
[<Source>, <Count>],
...
]
IMPORTANT: **Your entire response must be a parseable JSON object and nothing else.**

User Prompt

Examine the node-link diagram in the figure and extract all connections as pairs. For each connection, provide the source node
label and the count value shown next to each node in the format [<Source>, <Count>].

Figure D.5: Example of VDE on Linear Sequence Clusters

Benchmark Process
Chart

Expert
Authored

Multi-task
Eval.

Deterministic
Eval.

Full-Chart
Extraction

Multi-hop
Questions

Hallucination
Analysis

Real-
world
Data

Non-
GPT
Chart

Struct.
Density

PlotQA (Methani et al., 2020) ✗ ∼ ✗ ∼ ✓ ✓ ✗ ✓ ✗ ✗
ChartQA (Masry et al., 2022) ✗ ∼ ✗ ∼ ∼ ✓ ✗ ✓ ✓ ✗
UniChart (Masry et al., 2023) ✗ ∼ ✓ ∼ ✓ ✓ ✓ ✓ ✓ ✗
Chart-to-Text (Kantharaj et al., 2022b) ✗ ✓ ✗ ∼ ✓ ✗ ✓ ✓ ✓ ✗
OpenCQA (Kantharaj et al., 2022a) ✗ ∼ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗
ChartLlama (Han et al., 2023) ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗
ChartBench (Xu et al., 2023) ✗ ✗ ✓ ∼ ✗ ✓ ✓ ∼ ∼ ✗
ChartX (Xia et al., 2024) ✗ ∼ ✓ ∼ ✓ ✓ ✗ ✗ ✗ ✗
MMC (Liu et al., 2024) ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗
CharXiv (Wang et al., 2024) ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗
ChartQAPro (Masry et al., 2025) ✗ ∼ ✓ ∼ ✗ ✓ ∼ ✓ ✓ ✗
ProcVQA(Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table C.1: Comparison of chart understanding benchmarks across key evaluation dimensions.: inclusion of process
visualizations, whether QA is expert vs. machine-generated, multiple evaluation tasks, deterministic answer
extraction, full-chart extraction, multi-step reasoning questions, hallucination analysis, real-world data sources,
non-GPT generated charts, and structural density analysis. Here, ✓ = full coverage, ∼ = partial support and ✗ = not
covered. ProcVQAcovers all evaluation dimensions while focusing on process visualizations.

E.1 VDE Task results

Tab. E.1 shows overall performance for the VDE
task, and tabs. E.2 to E.4 breaks down performance
by density level of node, edge, and overall density
respectively.

E.2 VQA Task results

Tab. E.6 provides a detailed breakdown of accu-
racy across four VQA categories: Value Extraction,
Sequential Reasoning, Unanswerable, and Value
Aggregation. Tab. E.7 further breaks down the
performance by visual structures.

F Human-VLM Performance
Comparison

We adopt the same visualization generation
pipeline as (Zinat et al., 2023) (elaborated in
app. A.4). They conduct a human evaluation study
on 301 crowdsourced users on a similar dataset,
with six questions to prescreen participants. Their
survey questions cover three of our VQA reasoning
tasks (Value Extraction, Sequential Reasoning and
Value Aggregation). 192 out of 301 participants
answered at least 50% of questions correctly, and
were selected for the main study.

Tab. F.1 contains the human vs VLM perfor-
mance comparisons for VQA tasks. For value
extraction task, humans achieve 96% accuracy,
compared to the best VLM performance of 100%.
VLMs outperform humans on sequential reason-
ing tasks by a large margin. The best-performing
model (Gemini-2.5-Pro) achieves 94.12% accuracy,
compared to human performance of just 68.11%,
showing a substantial 26 percentage point advan-
tage. Both humans and VLMs find the value ag-

gregation task to be most challenging (64.12% for
humans vs. 74.07% for the best VLM).

G Failure Mode Analysis

To better understand the limitations of current
VLMs on ProcVQA, we conduct a detailed anal-
ysis of their failure modes across both VDE and
VQA tasks. Model outputs exhibit patterns of fail-
ure, including instruction noncompliance, halluci-
nation under high structural density, spurious nu-
meric guessing, and breakdowns in reasoning over
branching structures.

G.1 Case Study: Value Aggregation Task
One of the most intriguing example of model limi-
tations comes from a value aggregation task requir-
ing models to answer: “How many times did UMD
Offense transition from UNC Offense?” on graph
visualizations (fig. D.2). The task required accu-
rately identifying and summing three links (with
values 22, 23, and 24) between nodes and provide
the correct answer of 69 (22 + 23 + 24).

All of the evaluated VLMs failed to correctly
answer the question. Manual inspection of reason-
ing output from the VLMs revealed six distinct
failure modes when processing visual-numerical
relationships. Here we discuss two main failure
modes, covering 15 of the 21 failures (71%). The
complete list of failure modes along with model
information are provided in tab. G.1. The original
responses are provided in tabs. G.2 to G.7.

Partial Summation (8 models): The most preva-
lent failure mode involved models successfully
identifying two of the three relevant links which are
indirect (having another node in-between) but con-
sistently missing the third direct connection, typi-

Model Extracted Correct P% R% Hallucinated

Gemini Models
Gemini-2.5-Pro-Thinking 2538 2456 96.8 95.1 82
Gemini-2.5-Pro 2536 2432 95.9 94.2 104
Gemini-2.5-Flash 2521 2245 89.1 86.9 276
Gemini-2.0-Flash 2446 2301 94.1 89.1 145

Gemma Models
Gemma-3-27B-IT 2063 1811 87.8 70.1 252

Claude Models
Claude-3.7-Sonnet 2411 2293 95.1 88.8 118
Claude-3.5-Sonnet 2320 2193 94.5 84.9 127
Claude-3.5-Haiku 2118 1812 85.6 70.2 306
Claude-3-Haiku 1860 1495 80.4 57.9 365

GPT Models
GPT-4.1 2408 2166 90.0 83.9 242
GPT-4o 2083 1886 90.5 73.0 197

Qwen Models
Qwen-VL-Plus 1158 804 69.4 31.1 354
Qwen-VL-Max 2015 1806 89.6 69.9 209
QVQ-Max 2022 1608 79.5 62.3 414
Qwen2.5-VL-72B 2406 2148 89.3 83.2 258
Qwen2.5-VL-32B 2204 1904 86.4 73.7 300
Qwen2.5-VL-7B 1772 1422 80.2 55.1 350

Llama Models
Llama-4-Maverick-17B 2437 2146 88.1 83.1 291
Llama-4-Scout-17B 2081 1709 82.1 66.2 372
Llama-3.2-90B-Vision 2560 2454 95.9 95.0 106
Llama-3.2-11B-Vision 1275 838 65.7 32.4 437

Table E.1: Performance of all models on the VDE (visual data extraction) task, evaluated against 2,583 ground-
truth events. Larger models such as Gemini-2.5-Pro-Thinking and Llama-3.2-90B-Vision achieve near-complete
extraction with low hallucination, while smaller models extract fewer correct tuples and hallucinate more.

Family Model Level GT Ext Corr P% R% Hallucinated Hallucination Rate%

G
em

in
i

Gemini-2.5-Pro-Thinking
L 810 802 799 99.6 98.6 3 0.4
M 725 722 718 99.4 99.0 4 0.6
H 1048 1014 939 92.6 89.6 75 7.4

Gemini-2.5-Pro-Preview
L 810 798 784 98.2 96.8 14 1.8
M 725 719 706 98.2 97.4 13 1.8
H 1048 1019 942 92.4 89.9 77 7.6

Gemini-2.5-Flash-Preview
L 810 771 698 90.5 86.2 73 9.5
M 725 718 686 95.5 94.6 32 4.5
H 1048 1032 861 83.4 82.2 171 16.6

Gemini-2.0-Flash
L 810 794 785 98.9 96.9 9 1.1
M 725 704 684 97.2 94.3 20 2.8
H 1048 948 832 87.8 79.4 116 12.2

G
em

m
a

Gemma 3 27B-IT
L 810 742 705 95.0 87.0 37 5.0
M 725 662 604 91.2 83.3 58 8.8
H 1048 659 502 76.2 47.9 157 23.8

C
la

ud
e

Claude-3.7-Sonnet
L 810 803 800 99.6 98.8 3 0.4
M 725 706 686 97.2 94.6 20 2.8
H 1048 902 807 89.5 77.0 95 10.5

Claude-3.5-Sonnet
L 810 790 782 99.0 96.5 8 1.0
M 725 693 672 97.0 92.7 21 3.0
H 1048 837 739 88.3 70.5 98 11.7

Claude-3.5-Haiku
L 810 762 705 92.5 87.0 57 7.5
M 725 658 595 90.4 82.1 63 9.6
H 1048 698 512 73.4 48.9 186 26.6

Claude 3 Haiku
L 810 665 589 88.6 72.7 76 11.4
M 725 579 500 86.4 69.0 79 13.6
H 1048 616 406 65.9 38.7 210 34.1

G
PT

GPT-4.1
L 810 806 782 97.0 96.5 24 3.0
M 725 717 668 93.2 92.1 49 6.8
H 1048 885 716 80.9 68.3 169 19.1

GPT-4o
L 810 787 758 96.3 93.6 29 3.7
M 725 701 649 92.6 89.5 52 7.4
H 1048 595 479 80.5 45.7 116 19.5

M
et

a/
L

la
m

a

Llama-4-Maverick-17B
L 810 857 773 90.2 95.4 84 9.8
M 725 684 637 93.1 87.9 47 6.9
H 1048 896 736 82.1 70.2 160 17.9

Llama-4-Scout-17B
L 810 733 649 88.5 80.1 84 11.5
M 725 611 540 88.4 74.5 71 11.6
H 1048 737 520 70.6 49.6 217 29.4

Llama-3.2-90B-Vision
L 810 806 789 97.9 97.4 17 2.1
M 725 721 716 99.3 98.8 5 0.7
H 1048 1020 949 93.0 90.6 71 7.0

Llama-3.2-11B-Vision
L 810 574 413 65.7 32.4 161 34.3
M 725 391 281 71.9 38.8 110 28.1
H 1048 310 144 46.5 13.7 166 53.5

Q
w

en

Qwen-VL-Plus
L 810 492 398 69.4 31.1 94 30.6
M 725 349 249 71.3 34.3 100 28.7
H 1048 317 157 49.5 15.0 160 50.5

Qwen-VL-Max
L 810 751 726 96.7 89.6 25 3.3
M 725 550 517 94.0 71.3 33 6.0
H 1048 714 563 78.9 53.7 151 21.1

QvQ-Max
L 810 745 646 86.7 79.8 99 13.3
M 725 651 502 77.1 69.2 149 22.9
H 1048 626 460 73.5 43.9 166 26.5

Qwen-2.5-VL-72B
L 810 775 746 96.3 92.1 29 3.7
M 725 703 673 95.7 92.8 30 4.3
H 1048 928 729 78.6 69.6 199 21.4

Qwen-2.5-VL-32B
L 810 734 687 93.6 84.8 47 6.4
M 725 657 600 91.3 82.8 57 8.7
H 1048 813 617 75.9 58.9 196 24.1

Qwen-2.5-VL-7B
L 810 708 628 88.7 77.5 80 11.3
M 725 648 521 80.4 71.9 127 19.6
H 1048 416 273 65.6 26.0 143 34.4

Table E.2: Model Performance on VDE task by Node density level. Hallucination Rate is defined as 1− P , i.e., the
percentage of extracted events that were not present in the ground truth. GT: Ground Truth tuples, Ext: Extracted
tuples, Corr: Correctly extracted tuples. Density levels: L (Low), M (Medium), H (High). Recall and Precision
remain high on Low and Medium density charts but declines sharply at High density.

Family Model Level GT Ext Corr P% R% Hallucinated Hallucination Rate%

G
em

in
i

Gemini-2.5-Pro-Thinking
L 968 966 963 99.7 99.5 3 0.3
M 880 852 846 99.3 96.1 6 0.7
H 735 720 647 89.9 88.0 73 10.1

Gemini-2.5-Pro
L 968 957 949 99.2 98.0 8 0.8
M 880 860 840 97.7 95.5 20 2.3
H 735 719 643 89.4 87.5 76 10.6

Gemini-2.5-Flash
L 968 938 861 91.8 88.9 77 8.2
M 880 860 770 89.5 87.5 90 10.5
H 735 723 614 84.9 83.5 109 15.1

Gemini-2.0-Flash
L 968 956 947 99.1 97.8 9 0.9
M 880 844 822 97.4 93.4 22 2.6
H 735 646 532 82.4 72.4 114 17.6

G
em

m
a

Gemma 3 27B-IT
L 968 918 869 94.7 89.8 49 5.3
M 880 712 643 90.3 73.1 69 9.7
H 735 433 299 69.1 40.7 134 30.9

C
la

ud
e

Claude-3.7-Sonnet
L 968 950 947 99.7 97.8 3 0.3
M 880 866 843 97.3 95.8 23 2.7
H 735 595 503 84.5 68.4 92 15.5

Claude-3.5-Sonnet
L 968 941 933 99.1 96.4 8 0.9
M 880 812 788 97.0 89.5 24 3.0
H 735 567 472 83.2 64.2 95 16.8

Claude-3.5-Haiku
L 968 892 827 92.7 85.4 65 7.3
M 880 758 681 89.8 77.4 77 10.2
H 735 468 304 65.0 41.4 164 35.0

Claude-3-Haiku
L 968 797 708 88.8 73.1 89 11.2
M 880 668 577 86.4 65.6 91 13.6
H 735 395 210 53.2 28.6 185 46.8

G
PT

GPT-4.1
L 968 956 931 97.4 96.2 25 2.6
M 880 862 787 91.3 89.4 75 8.7
H 735 590 448 75.9 61.0 142 24.1

GPT-4o
L 968 949 917 96.6 94.7 32 3.4
M 880 749 683 91.2 77.6 66 8.8
H 735 385 286 74.3 38.9 99 25.7

L
la

m
a

Llama-4-Maverick-17B
L 968 953 920 96.5 95.0 33 3.5
M 880 885 775 87.6 88.1 110 12.4
H 735 599 451 75.3 61.4 148 24.7

Llama-4-Scout-17B
L 968 865 780 90.2 80.6 85 9.8
M 880 714 625 87.5 71.0 89 12.5
H 735 502 304 60.6 41.4 198 39.4

Llama-3.2-90B-Vision
L 968 961 944 98.2 97.5 17 1.8
M 880 869 862 99.2 98.0 7 0.8
H 735 717 648 90.4 88.2 69 9.6

Llama-3.2-11B-Vision
L 968 654 465 71.1 48.0 189 28.9
M 880 405 304 75.1 34.5 101 24.9
H 735 216 69 31.9 9.4 147 68.1

Q
w

en

Qwen-VL-Plus
L 968 504 408 81.0 42.1 96 19.0
M 880 386 271 70.2 30.8 115 29.8
H 735 268 125 46.6 17.0 143 53.4

Qwen-VL-Max
L 968 804 779 96.9 80.5 25 3.1
M 880 770 726 94.3 82.5 44 5.7
H 735 441 301 68.3 41.0 140 31.7

QvQ Max
L 968 902 758 84.0 78.3 144 16.0
M 880 690 558 80.9 63.4 132 19.1
H 735 430 292 67.9 39.7 138 32.1

Qwen-2.5-VL-72B
L 968 948 926 97.7 95.7 22 2.3
M 880 842 783 93.0 89.0 59 7.0
H 735 616 439 71.3 59.7 177 28.7

Qwen-2.5-VL-32B
L 968 895 840 93.9 86.8 55 6.1
M 880 740 673 90.9 76.5 67 9.1
H 735 569 391 68.7 53.2 178 31.3

Qwen-2.5-VL-7B
L 968 853 758 88.9 78.3 95 11.1
M 880 717 564 78.7 64.1 153 21.3
H 735 202 100 49.5 13.6 102 50.5

Table E.3: Model Performance on VDE task by Edge density level, determined by the number of edges/clusters in
the visualization. Hallucination Rate is defined as 1− P (i.e., the percentage of extracted events that are not in the
ground truth). GT: Ground Truth tuples, Ext: Extracted tuples, Corr: Correctly extracted tuples. Density levels: L
(Low), M (Medium), H (High). Recall and Precision high on Low and Medium density charts but declines sharply
at High density.

Family Model Level GT Ext Corr P% R% Hallucinated Hallucination Rate%

G
em

in
i

Gemini-2.5-Pro-Thinking
L 612 611 608 99.5 99.3 3 0.5
M 923 913 909 99.6 98.5 4 0.4
H 1048 1014 939 92.6 89.6 75 7.4

Gemini-2.5-Pro
L 612 605 600 99.2 98.0 5 0.8
M 923 912 890 97.6 96.4 22 2.4
H 1048 1019 942 92.4 89.9 77 7.6

Gemini-2.5-Flash
L 612 586 533 91.0 87.1 53 9.0
M 923 903 851 94.2 92.2 52 5.8
H 1048 1032 861 83.4 82.2 171 16.6

Gemini-2.0-Flash
L 612 601 592 98.5 96.7 9 1.5
M 923 897 877 97.8 95.0 20 2.2
H 1048 948 832 87.8 79.4 116 12.2

G
em

m
a

Gemma-3-27B-IT
L 612 588 555 94.4 90.7 33 5.6
M 923 816 754 92.4 81.7 62 7.6
H 1048 659 502 76.2 47.9 157 23.8

C
la

ud
e

Claude-3.7-Sonnet
L 612 605 602 99.5 98.4 3 0.5
M 923 904 884 97.8 95.8 20 2.2
H 1048 902 807 89.5 77.0 95 10.5

Claude-3.5-Sonnet
L 612 597 589 98.7 96.2 8 1.3
M 923 886 865 97.6 93.7 21 2.4
H 1048 837 739 88.3 70.5 98 11.7

Claude-3.5-Haiku
L 612 578 526 91.0 85.9 52 9.0
M 923 842 774 91.9 83.9 68 8.1
H 1048 698 512 73.4 48.9 186 26.6

Claude 3 Haiku
L 612 518 443 85.5 72.4 75 14.5
M 923 726 646 89.0 70.0 80 11.0
H 1048 616 406 65.9 38.7 210 34.1

G
PT

GPT-4.1
L 612 608 589 96.9 96.2 19 3.1
M 923 915 861 94.1 93.3 54 5.9
H 1048 885 716 80.9 68.3 169 19.1

GPT-4o
L 612 599 576 96.2 94.1 23 3.8
M 923 889 831 93.5 90.0 58 6.5
H 1048 595 479 80.5 45.7 116 19.5

L
la

m
a

Llama-3.2-90B-Vision
L 612 608 591 97.2 96.6 17 2.8
M 923 919 914 99.5 99.0 5 0.5
H 1048 1020 949 93.0 90.6 71 7.0

Llama-4-Maverick-17B
L 612 608 582 95.7 95.1 26 4.3
M 923 933 828 88.7 89.7 105 11.3
H 1048 896 736 82.1 70.2 160 17.9

Llama-4-Scout-17B
L 612 577 496 86.0 81.0 81 14.0
M 923 767 693 90.4 75.1 74 9.6
H 1048 737 520 70.6 49.6 217 29.4

Llama-3.2-11B-Vision
L 612 482 325 67.4 53.1 157 32.6
M 923 483 369 76.4 40.0 114 23.6
H 1048 310 144 46.5 13.7 166 53.5

Q
w

en

Qwen-VL-Plus
L 612 407 330 81.1 53.9 77 18.9
M 923 434 317 73.0 34.3 117 27.0
H 1048 317 157 49.5 15.0 160 50.5

Qwen-VL Max
L 612 580 557 96.0 91.0 23 4.0
M 923 721 686 95.1 74.3 35 4.9
H 1048 714 563 78.9 53.7 151 21.1

QvQ Max
L 612 559 496 88.7 81.0 63 11.3
M 923 837 652 77.9 70.6 185 22.1
H 1048 626 460 73.5 43.9 166 26.5

Qwen-2.5-VL-72B
L 612 597 577 96.6 94.3 20 3.4
M 923 881 842 95.6 91.2 39 4.4
H 1048 928 729 78.6 69.6 199 21.4

Qwen-2.5-VL-32B
L 612 567 525 92.6 85.8 42 7.4
M 923 824 762 92.5 82.6 62 7.5
H 1048 813 617 75.9 58.9 196 24.1

Qwen-2.5-VL-7B
L 612 530 469 88.5 76.6 61 11.5
M 923 826 680 82.3 73.7 146 17.7
H 1048 416 273 65.6 26.0 143 34.4

Table E.4: Model Performance by Overall: Node + Edge density level. Hallucination Rate is defined as 1− P (the
percentage of extracted events that are not in the ground truth). GT: Ground Truth events, Ext: Extracted events,
Corr: Correctly extracted events. Density levels: L (Low), M (Medium), H (High). Recall and Precision remain
high on Low and Medium density charts but declines at High density.

cally resulting in answers of 46 (22 + 24). Among
proprietary models, both latest GPT and Claude
models (GPT-4o; Claude-3.7-Sonnet) were suscep-
tible to this error, along with recent open-source
models (Llama-4-maverick-17B).

Single-Link Selection (7 models): Models re-
ported only one transition value as the answer, fail-
ing to recognize multiple valid paths. Both pro-
prietary and open-sourced models from Google
(Gemini and Gemma) were affected by this. In-
terestingly, Gemini-2.5-Flash, which demonstrated
the most sophisticated reasoning in this task by
explicitly acknowledging it had “missed” an edge,
ultimately failed by providing only the value of
the final identified link rather than aggregating all
discovered values.

G.2 Case Study: Hallucination

Two failure modes dominate in hallucination sce-
narios:

Edge-value fabrication: the model identifies the
correct <source-target> pair but hallucinates
the edge weight, especially when several values
appear close together.
Node fusion: models merge adjacent nodes, e.g.,
“Rebound” and “Exit” into “Rebound Exit”. This
happens most often when a leaf node is near a
non-leaf node.

G.3 Case Study: Instruction-Following
Failures

Processing failures on high-density diagrams.
VLMs frequently ignored instructions or failed to
generate valid outputs on dense charts. Claude-
3.7-Sonnet entered infinite loops, endlessly repeat-
ing a tuple until hitting the token limit. Open-
source models such as Llama-3.2-11B and Qwen-
VL-Plus often produced unparseable JSON or non-
convergent generations in 40% of extraction cases.

As mentioned in section 3, LLaMA-3.2-11B-
Vision showed an especially anomalous pattern,
with near-zero accuracy on single-hop (0%) and
multi-hop (1.3%) VQA tasks, substantially lower
than other models, including its own family vari-
ants. Closer inspection revealed that its failures
stemmed from instruction noncompliance rather
than reasoning limitations. Despite prompts speci-
fying the format <answer>X</answer>, the model
frequently produced multiple <answer> tags per
response.

After manually extracting answers, its adjusted
accuracy rose to 21.53%, still well below other
models but significantly higher than the automated
near-zero scores. Reported results for LLaMA-3.2-
11B-Vision in tabs. 1, E.6 and E.7 reflect these
corrected values.

Similar behavior was observed in Llama-3.2-
90B-Vision, which deviated from the required for-
mat (e.g., outputting **Answer**: X instead of
<answer>X</answer>), resulting in performance
drop in VQA compared to VDE.

By contrast, Llama-4 variants (Maverick-17B,
Scout-17B) delivered more stable performance,
likely benefiting from architectural refinements (Ja-
cobs et al., 1991; Shazeer et al., 2017) or training
strategies.

We also observed systematic mislabeling of
‘unanswerable’ questions, where some models out-
put ‘0’ instead of ‘indeterminate’, resulting in a
loss of accuracy. Since such responses would prop-
agate as errors in downstream tasks, we treat them
as incorrect.

H Computational Experiments

H.1 Model Parameters, Computational
Budget, and Infrastructure

In our paper, we comprehensively evaluated a di-
verse set of Vision-Language Models (VLMs) as
detailed in app. B.3. For proprietary models, we
accessed Claude models (3-Haiku through 3.7-
Sonnet), Gemini models (2.0-Flash through 2.5-
Pro), GPT models (4o and 4.1), and Qwen-VL
commercial variants via their respective APIs.

Our open-source model evaluation included
multiple parameter scales across model families:
Llama models (ranging from 11B to 90B parame-
ters), Qwen models (7B to 72B parameters), and
Gemma-3-27B. The specific parameter counts for
each model are provided in tab. 1.

For computational resources, we utilized 5-6
NVIDIA A6000 Ada GPUs for inference of all
open-source models. The total computational bud-
get for our experiments was approximately 760
GPU hours. Proprietary models incurred separate
API usage costs around 30 USD in total.

All experimental runs were conducted between
February and April 2025, with model versions cur-
rent as of that period.

H.2 Experimental Setup and
Hyperparameters

Consistent with this objective of establishing base-
lines, we did not perform hyperparameter searches.
All proprietary models (Claude, Gemini, GPT, and
commercial Qwen variants) were accessed via their
APIs using default inference parameters, with tem-
perature fixed to 0 for deterministic outputs.

For Gemini-2.5-Pro Thinking, we set the think-
ing budget as 1024 tokens.

For open-source models, we applied the follow-
ing consistent settings across all experiments:

• Sampling temperature: 0

• Top-p: default model values (unchanged)

• Maximum output token length: 1000

• Batch size: 1 (due to memory constraints for
larger models)

For evaluation metrics, we measure accuracy
for the VQA task as detailed in section 2.2 and
app. B.2.2, and measure precision, recall, and F1
scores for the VDE task app. B.2.1. Metrics are
computed using standardized implementations to
ensure consistency across all model evaluations.

Our experimental procedure for all models fol-
lowed the same workflow: (1) load the model,
(2) present the visualization with appropriate task-
specific instructions, (3) collect and parse the
model’s response, and (4) compute performance
metrics against gold standard annotations. This
standardized approach ensures that performance
differences reflect model capabilities rather than
evaluation methodology variations.

H.3 Packages

All statistical analyses and visualizations were
created using Python 3.10 with NumPy (1.24.3),
Pandas (2.0.1), Matplotlib (3.7.1), and Seaborn
(0.12.2). For model inference, we utilized the Hug-
ging Face Transformers library (4.35.0) to load and
run the open-source vision-language models.

I Use of AI Assistants

We used GitHub Copilot for assistance with code
development of our evaluation and data processing
pipelines. Additionally, we used Claude and Chat-
GPT to help with proofreading and polishing text
to improve the clarity of our writing.

I.1 License
We release the code publicly on GitHub
https://github.com/kzintas/ProcVQA under the
MIT license. We hope that our benchmark will
serve as a valuable resource for evaluating future
models.

https://github.com/kzintas/ProcVQA

Figure E.1: Histogram of node (top), edge (middle) and unique node (bottom) distribution in ProcVQA across the
three visualization structures: tree (left), graph (middle) and linear sequences (right). Linear Sequence clusters have
a higher node count compared to trees and graphs.

Family Model Technique Ground Truth Extracted Correctly P% R% Hallucinated Hallucination Rate%
Events Events Extracted Events

G
em

in
i

Gemini-2.5-Pro-Thinking
Tree 370 369 359 97.3 97.0 10 2.7
Graph 673 659 598 90.7 88.9 61 9.3
Linear Sequence Cluster 1540 1510 1499 99.3 97.3 11 0.7

Gemini-2.5-Pro
Tree 370 369 360 97.6 97.3 9 2.4
Graph 673 665 606 91.1 90.0 59 8.9
Linear Sequence Cluster 1540 1502 1466 97.6 95.2 36 2.4

Gemini-2.5-Flash
Tree 370 368 351 95.4 94.9 17 4.6
Graph 673 673 580 86.2 86.2 93 13.8
Linear Sequence Cluster 1540 1480 1314 88.8 85.3 166 11.2

Gemini-2.0-Flash
Tree 370 364 335 92.0 90.5 29 8.0
Graph 673 623 522 83.8 77.6 101 16.2
Linear Sequence Cluster 1540 1459 1444 99.0 93.8 15 1.0

G
em

m
a

Gemma-3-27B-IT
Tree 370 334 273 81.7 73.8 61 18.3
Graph 673 570 424 74.4 63.0 146 25.6
Linear Sequence Cluster 1540 1159 1114 96.1 72.3 45 3.9

C
la

ud
e

Claude-3.7-Sonnet
Tree 370 369 349 94.6 94.3 20 5.4
Graph 673 638 546 85.6 81.1 92 14.4
Linear Sequence Cluster 1540 1404 1398 99.6 90.8 6 0.4

Claude-3.5-Sonnet
Tree 370 353 335 94.9 90.5 18 5.1
Graph 673 589 526 89.3 78.2 63 10.7
Linear Sequence Cluster 1540 1378 1332 96.7 86.5 46 3.3

Claude-3.5-Haiku
Tree 370 331 265 80.1 71.6 66 19.9
Graph 673 590 414 70.2 61.5 176 29.8
Linear Sequence Cluster 1540 1197 1133 94.7 73.6 64 5.3

Claude-3-Haiku
Tree 370 279 166 59.5 44.9 113 40.5
Graph 673 504 306 60.7 45.5 198 39.3
Linear Sequence Cluster 1540 1077 1023 95.0 66.4 54 5.0

G
PT

GPT-4.1
Tree 370 364 349 95.9 94.3 15 4.1
Graph 673 650 500 76.9 74.3 150 23.1
Linear Sequence Cluster 1540 1394 1317 94.5 85.5 77 5.5

GPT-4o
Tree 370 346 327 94.5 88.4 19 5.5
Graph 673 624 480 76.9 71.3 144 23.1
Linear Sequence Cluster 1540 1113 1079 96.9 70.1 34 3.1

L
la

m
a

Llama-4-Maverick-17B
Tree 370 344 295 85.8 79.7 49 14.2
Graph 673 608 470 77.3 69.8 138 22.7
Linear Sequence Cluster 1540 1485 1381 93.0 89.7 104 7.0

Llama-4-Scout-17B
Tree 370 315 198 62.9 53.5 117 37.1
Graph 673 564 356 63.1 52.9 208 36.9
Linear Sequence Cluster 1540 1202 1155 96.1 75.0 47 3.9

Llama-3.2-90B-vision
Tree 370 370 360 97.3 97.3 10 2.7
Graph 673 658 609 92.6 90.5 49 7.4
Linear Sequence Cluster 1540 1519 1485 97.8 96.4 34 2.2

Llama-3.2-11B-Vision
Tree 370 242 113 46.7 30.5 129 53.3
Graph 673 425 218 51.3 32.4 207 48.7
Linear Sequence Cluster 1540 608 507 83.4 32.9 101 16.6

Q
w

en

Qwen-VL-Plus
Tree 370 257 152 59.1 41.1 105 40.9
Graph 673 460 259 56.3 38.5 201 43.7
Linear Sequence Cluster 1540 441 393 89.1 25.5 48 10.9

Qwen-VL-Max
Tree 370 332 296 89.2 80.0 36 10.8
Graph 673 589 447 75.9 66.4 142 24.1
Linear Sequence Cluster 1540 1094 1063 97.2 69.0 31 2.8

QVQ-Max
Tree 370 319 267 83.7 72.2 52 16.3
Graph 673 515 394 76.5 58.5 121 23.5
Linear Sequence Cluster 1540 1188 947 79.7 61.5 241 20.3

Qwen 2.5-VL-72B
Tree 370 343 303 88.3 81.9 40 11.7
Graph 673 571 461 80.7 68.5 110 19.3
Linear Sequence Cluster 1540 1492 1384 92.8 89.9 108 7.2

Qwen 2.5-VL-32B
Tree 370 327 287 87.8 77.6 40 12.2
Graph 673 601 408 67.9 60.6 193 32.1
Linear Sequence Cluster 1540 1276 1209 94.7 78.5 67 5.3

Qwen 2.5-VL-7B
Tree 370 310 215 69.4 58.1 95 30.6
Graph 673 461 293 63.6 43.5 168 36.4
Linear Sequence Cluster 1540 1001 914 91.3 59.4 87 8.7

Table E.5: Model performance on VDE tasks disaggregated by visualization structures: Trees, Graphs and Linear
Sequence Clusters. Hallucination Rate is defined as 1 − P , i.e., the percentage of extracted events that are
hallucinated. GT: Ground Truth events, Ext: Extracted events, Corr: Correctly extracted events. The models
generally perform better on trees and linear sequence clusters, showing higher precision and recall than on graphs,
where the accuracy drops and hallucination rate increases.

Single-Hop Reasoning Multi-hop Reasoning

Model Value Extraction Sequential Reasoning Unanswerable Value Aggregation

Gemini-2.5-Pro-Thinking 100.00 94.12 82.61 74.07
Gemini-2.5-Pro 100.00 92.16 60.87 64.81
Gemini-2.5-Flash 100.00 88.24 100.00 59.26
Gemini-2.0-Flash 93.75 88.24 60.87 61.11

Gemma-3-27B-IT 93.75 80.39 47.83 31.48

Claude-3.7-Sonnet 100.00 88.24 60.87 62.96
Claude-3.5-Sonnet 93.75 84.31 52.17 50.00
Claude-3.5-Haiku 62.50 66.67 30.43 40.74
Claude-3-Haiku 57.14 70.59 30.43 22.22

GPT-4.1 93.75 82.35 43.48 62.96
GPT-4o 87.50 76.47 52.17 44.44

Llama-4-Maverick-17B 100.00 84.31 60.87 59.26
Llama-4-Scout-17B 93.75 88.24 60.87 44.44
Llama-3.2-90B 43.75 33.33 21.74 14.81
Llama-3.2-11B 37.50 39.22 4.35 7.41

Qwen-VL-Plus 75.00 70.59 0.00 22.22
Qwen-VL-Max 100.00 84.31 26.09 46.30
QVQ-Max 75.00 78.43 73.91 25.93
Qwen-2.5-VL-72B 93.75 76.47 69.57 37.04
Qwen-2.5-VL-32B 93.75 78.43 47.83 38.89
Qwen-2.5-VL-7B 81.25 62.75 43.48 25.93

Table E.6: Accuracy of VLMs on four VQA categories. Results are disaggregated into single-hop (value extraction,
sequential reasoning) and multi-hop (unanswerable, value aggregation) tasks.

Model Name Value Extraction Sequential Reasoning Unanswerable Value Aggregation

Tree Graph Tree Graph Linear-sequence cluster Tree Graph Linear-sequence cluster Tree Graph Linear-sequence cluster

Gemini-2.5-Pro-Thinking 100.00 100.00 100.00 90.48 92.86 88.89 88.89 60.00 100.00 38.46 80.00
Gemini-2.5-Pro 100.00 100.00 100.00 90.48 85.71 77.78 55.56 40.00 100.00 30.77 66.67
Gemini-2.5-Flash 100.00 100.00 100.00 85.71 78.57 100.00 100.00 100.00 72.73 30.77 66.67
Gemini-2.0-Flash 100.00 88.89 100.00 90.48 71.43 44.44 88.89 40.00 81.82 30.77 66.67

Gemma-3-27B-IT 100.00 88.89 93.75 85.71 57.14 44.44 77.78 0.00 45.45 15.38 33.33

Claude-3.7-Sonnet 100.00 100.00 100.00 85.71 78.57 66.67 55.56 60.00 81.82 15.38 76.67
Claude-3.5-Sonnet 100.00 88.89 100.00 80.95 71.43 55.56 66.67 20.00 63.64 15.38 60.00
Claude-3-Haiku 57.14 55.56 87.50 57.14 71.43 11.11 55.56 20.00 27.27 0.00 30.00
Claude-3.5-Haiku 57.14 66.67 87.50 61.90 50.00 44.44 11.11 40.00 45.45 7.69 53.33

GPT-4.1 100.00 88.89 100.00 66.67 85.71 66.67 44.44 0.00 90.91 15.38 73.33
GPT-4o 100.00 77.78 87.50 76.19 64.29 55.56 66.67 20.00 72.73 7.69 50.00

Llama-4-Maverick-17B 100.00 100.00 100.00 71.43 85.71 55.56 88.89 20.00 81.82 7.69 73.33
Llama-4-Scout-17B 85.71 100.00 87.50 85.71 92.86 55.56 77.78 40.00 63.64 7.69 53.33
Llama-3.2-11B-Vision 57.14 22.22 62.50 42.86 7.14 11.11 0.00 0.00 9.09 7.69 6.67
Llama-3.2-90B-Vision 14.29 66.67 50.00 28.57 21.43 0.00 55.56 0.00 18.18 7.69 16.67

Qwen-VL-plus 57.14 88.89 93.75 57.14 64.29 0.00 0.00 0.00 36.36 0.00 26.67
Qwen-VL-Max 100.00 100.00 93.75 76.19 85.71 22.22 44.44 0.00 63.64 7.69 56.67
QVQ-Max 85.71 66.67 93.75 66.67 78.57 88.89 88.89 20.00 45.45 7.69 26.67
Qwen2.5-VL-72B 85.71 100.00 93.75 80.95 50.00 77.78 88.89 20.00 54.55 15.38 40.00
Qwen2.5-VL-32B 100.00 88.89 93.75 76.19 64.29 55.56 66.67 0.00 54.55 7.69 46.67
Qwen2.5-VL-7B 85.71 77.78 87.50 42.86 64.29 22.22 66.67 40.00 54.55 7.69 23.33

Table E.7: VLM performance comparison across different tasks and visual structures. Values represent accuracy
percentages. Green highlighting indicates perfect performance (100%), while red highlighting indicates zero
performance where models failed completely (0%). Tree is the most tractable structure, whereas value extraction
is the most tractable task. Most models struggle with Unanswerable task on Linear Sequence Clusters and Value
Aggregation task on graphs.

Task Type Human Accuracy Best VLM Gap

Value Extraction 96.18% 100% (Gemini 2.5 Pro, Thinking, Flash) +3.82%
Sequential Reasoning 68.11% 94.12% (Gemini-2.5-Pro-Thinking) +26.01%
Value Aggregation 64.12% 74.07% (Gemini-2.5-Pro-Thinking) +9.95%

Table F.1: Human vs. best VLM accuracy across VQA tasks. Both find value extraction task easiest and value
aggregation task most difficult, but VLMs surpass humans on sequential reasoning by a large margin.

Failure Mode Description Models Affected Count

1. Partial Summation Summed only two indirect edges (e.g.,
22 + 24 = 46), failing to include the third
edge. This was the most frequent error.

GPT-4o, GPT-4.1,
Qwen2.5-VL-72B,
Qwen-VL-Max,
Claude-3.5-Sonnet,
Claude-3.7-Sonnet,
Meta-Llama-4-Maverick-17B,
Meta-Llama-4-Scout-17B

8

2. Single-Link Selection Reported only one direct edge value (e.g., 22,
23, or 24), overlooking that multiple edges
should be aggregated.

Gemini-2.0-Flash,
Gemini-2.5-Pro,
Gemini-2.5-Flash,
Gemma-3-27B-IT,
Claude-3.5-Haiku,
Qwen2.5-VL-7B,
Qwen2.5-VL-32B

7

3. Downstream Edge
Substitution

Partially (2/3) identified some edge values
but instead reported the value of an unrelated
downstream edge in the graph.

Qwen-VL-Plus (Answer: 34) 1

4. Indeterminate / Could Not
Find Answer

Claimed insufficient information, did not
follow instructions and/or fell into a long
reasoning loop without producing an answer.

Gemini-2.5-Pro-Thinking
(Answer: 0)
Llama-3.2-90B-Vision,
QVQ-Max

3

5. Edge-Counting Error Counted the number of edges rather than
summing their values, sometimes also
misreading the values themselves.

Llama-3.2-11B-Vision (Answer:
2)

1

6. Duplicate Edge Counting Added the same edge value twice. Claude-3-Haiku (Answer: 44) 1

Table G.1: Failure modes of VLMs on a value aggregation task on graphs, with the question provided in fig. D.2.
We identify six different failure modes across the 21 models we evaluated.

Model Predicted Answer Reasoning

Gemini-2.5-Pro-Thinking 0

"<reasoning> 1. **Identify the relevant nodes:** The user is asking about the transition from the
"UNC Offense" node to the "UMD Offense" node. I will locate these two nodes in the diagram. 2.
Trace the paths from the starting node: I will start at the "UNC Offense" node and follow all
the directed links originating from it. 3. **Analyze the outgoing links from "UNC Offense":** *
One link goes from "UNC Offense" to "Made Shot", with a value of 22. * Another link goes from
"UNC Offense" to "Missed Shot", with a value of 24. 4. **Check for direct transitions:** I will
look for any direct link connecting "UNC Offense" to "UMD Offense". 5. **Observation:** There
is no direct link (arrow) connecting the "UNC Offense" node directly to the "UMD Offense" node.
The flow from "UNC Offense" goes through intermediate events ("Made Shot" and "Missed Shot")
before reaching "UMD Offense". 6. **Conclusion:** Since there is no direct path, the number of
direct transitions is 0. </reasoning> <answer>0</answer>"

Gemini-2.5-Pro 23

<reasoning> 1. **Identify the starting node:** The question asks about transitions *from* "UNC
Offense". I locate the "UNC Offense" node in the diagram. 2. **Identify the ending node:**
The question asks about transitions *to* "UMD Offense". I locate the "UMD Offense" node in
the diagram. 3. **Look for a direct link:** I check if there is a direct link (an arrow) from the
"UNC Offense" node to the "UMD Offense" node. 4. **Read the link label:** There is indeed a
direct link. The numeric label next to this link indicates the number of sequences that followed
this specific path. The label on the link from "UNC Offense" directly to "UMD Offense" is 23.
5. **Conclusion:** This means that there were 23 instances where "UMD Offense" immediately
followed "UNC Offense". </reasoning> <answer>23</answer>

Gemini-2.5-Flash 23

<reasoning>1. Identify the relevant elements: I examined the nodes labeled "UNC Offense"
and "UMD Offense" and all the links connected to them. 2. Describe the thought process: The
question asks for the number of times ’UMD Offense’ transitioned directly from ’UNC Offense’.
This corresponds to the count on a directed link originating from the "UNC Offense" node and
terminating at the "UMD Offense" node. I visually scanned the diagram for such a link. I found
links going out of "UNC Offense" to "Made Shot" (22) and "Missed Shot" (24). I found links going
into "UMD Offense" from "Made Shot" (22) and "Missed Shot" (24), and also a link originating
from "UNC Offense" directly to "Made Shot" (23) - this seems to be an alternative path from UNC
Offense to Made Shot, potentially indicating different types of ’Made Shot’ events or a different
interpretation of the diagram layout/links. Let me re-examine the links from UNC Offense. There
are links from UNC Offense to Made Shot (labelled 22) and Missed Shot (labelled 24). There is
also a curved link from UNC Offense going *around* Made Shot and connecting to UMD Offense,
labelled 23. This curved link represents a direct transition from UNC Offense to UMD Offense. I
initially missed this curved link. Let me re-evaluate based on this curved link.
Re-evaluating: Looking carefully again, there is a curved link starting from "UNC Offense" and
ending at "UMD Offense", with the numerical label "23" next to it. This link directly represents
the transition from "UNC Offense" to "UMD Offense". The label "23" indicates the number of
sequences following this direct path.
So, the number of times UMD Offense transitioned directly from UNC Offense is 23. </reasoning>
<answer>23</answer>

Gemini-2.0-Flash 22

1. The question asks about the transitions from "UNC Offense" to "UMD Offense". 2. I need to
find the link that connects "UNC Offense" to "UMD Offense". 3. By examining the diagram, I can
see that the link connecting "UNC Offense" to "UMD Offense" has a count of 22.
<reasoning> The question asks for the number of transitions from "UNC Offense" to "UMD
Offense". The diagram shows a direct link between "UNC Offense" and "UMD Offense" with
the numeric label 22 next to it. This represents the number of times this transition occurred.
</reasoning> <answer>22</answer>

Gemma-3-27B-IT 24

Here’s an analysis of the node-link diagram to determine how many times UMD Offense transi-
tioned from UNC Offense:
<reasoning> 1. **Identify Relevant Nodes and Links:** The question asks about the transition
from "UNC Offense" to "UMD Offense". We need to find the link connecting these two nodes. 2.
Examine the Link: There is a link going from "UNC Offense" to "UMD Offense". The label
on this link indicates the number of sequences following this path. 3. **Read the Label:** The
label on the link from "UNC Offense" to "UMD Offense" is "24". 4. **Interpret the Value:** This
means that 24 sequences went from "UNC Offense" to "UMD Offense". </reasoning>
<answer>24</answer>

Table G.2: Sample VLM Responses for value aggregation task on graph, provided in fig. D.2. Correct Answer: 69

Model LLM Answer Reasoning

Claude-3.7-Sonnet 46

I’ll analyze this node-link diagram to determine how many times UMD Offense transitioned from
UNC Offense.
<reasoning> Looking at the node-link diagram, I need to find transitions from "UNC Offense" to
"UMD Offense".
In this diagram: - The top node is "_Start" which flows to "UNC Offense" (69 transitions) - From
"UNC Offense", there are two paths: - One path goes to "Made Shot" (22 transitions) - Another
path goes to "Missed Shot" (24 transitions) - From "Made Shot", there’s a path to "UMD Offense"
(22 transitions) - From "Missed Shot", there’s a path to "UMD Offense" (24 transitions)
To find how many times UMD Offense transitioned from UNC Offense, I need to count all paths
that start at UNC Offense and end at UMD Offense. These transitions happen through intermediate
nodes: - UNC Offense → Made Shot → UMD Offense: 22 transitions - UNC Offense → Missed
Shot → UMD Offense: 24 transitions
So the total number of transitions from UNC Offense to UMD Offense is 22 + 24 = 46 transitions.
</reasoning>
<answer>46</answer>

Claude-3.5-Sonnet 46

Let me analyze the node-link diagram to determine the transitions from UNC Offense to UMD
Offense.
<reasoning> 1. Looking at the diagram, I need to find paths that go from "UNC Offense" to "UMD
Offense"
2. I can see two possible paths from UNC Offense to UMD Offense: - UNC Offense -> Made Shot
→ UMD Offense - UNC Offense → Missed Shot → UMD Offense
3. Following the links and their labels: - Path through Made Shot: 22 sequences - Path through
Missed Shot: 24 sequences
4. To get total transitions, I add both paths: 22 + 24 = 46 total transitions from UNC Offense to
UMD Offense </reasoning>
<answer>46</answer>

Claude-3.5-Haiku 22

Let me carefully analyze the node-link diagram to determine the number of times UMD Offense
transitions from UNC Offense.
<reasoning> 1. I’ll trace the links connecting UNC Offense to UMD Offense 2. Looking at the
diagram, I see a link from "UNC Offense" to "UMD Offense" with the value 22 3. This means that
in 22 sequences, UNC Offense transitioned to UMD Offense </reasoning>
<answer>22</answer>

Claude-3-Haiku 44

<reasoning> To determine how many times UMD Offense transitioned from UNC Offense, I will
carefully examine the nodes and links in the diagram.
The diagram shows that there are two paths leading from UNC Offense to UMD Offense: 1. UNC
Offense -> Made Shot -> UMD Offense 2. UNC Offense -> Missed Shot -> UMD Offense
Looking at the link widths and labels, I can see that the first path (UNC Offense -> Made Shot ->
UMD Offense) has a count of 22, and the second path (UNC Offense -> Missed Shot -> UMD
Offense) has a count of 22 as well.
Adding these two counts together, I can determine that the total number of times UMD Offense
transitioned from UNC Offense is 22 + 22 = 44. </reasoning>
<answer>44</answer>

GPT-4.1 46

<reasoning> 1. The question asks for the number of times "UMD Offense" transitions from "UNC
Offense". 2. In the diagram, "UNC Offense" is at the top, and there are two outgoing links from it:
one to "Made Shot" (with a count of 23) and one to "Missed Shot" (with a count of 24). 3. From
"Made Shot", there is a link to "UMD Offense" with a count of 22. 4. From "Missed Shot", there
is also a link to "UMD Offense" with a count of 24. 5. To find the total number of transitions
from "UNC Offense" to "UMD Offense", sum the counts of the links from "Made Shot" and
"Missed Shot" to "UMD Offense": 22 (from "Made Shot") + 24 (from "Missed Shot") = 46. 6.
These transitions all originate from "UNC Offense" via either "Made Shot" or "Missed Shot".
</reasoning> <answer>46</answer>

Table G.3: Sample VLM Responses for value aggregation task on graph, provided in fig. D.2. Correct Answer: 69

Model LLM Answer Reasoning

GPT-4o 46

<reasoning> 1. Identify the relevant nodes and links: - The nodes involved are "UNC Offense" and
"UMD Offense." - We need to find the link that connects "UNC Offense" to "UMD Offense."

2. Examine the diagram: - From "UNC Offense," there are two outgoing links: - One link goes to
"Made Shot" with a count of 23. - Another link goes to "Missed Shot" with a count of 24.

3. Follow the paths: - From "Made Shot," there is a link to "UMD Offense" with a count of 22. -
From "Missed Shot," there is a link to "UMD Offense" with a count of 24.

4. Calculate the total transitions from "UNC Offense" to "UMD Offense": - The transition from
"UNC Offense" to "UMD Offense" via "Made Shot" is 22. - The transition from "UNC Offense"
to "UMD Offense" via "Missed Shot" is 24. - Total transitions = 22 + 24 = 46.

5. Conclusion: - The total number of times "UMD Offense" transitioned from "UNC Offense" is
46. </reasoning> <answer>46</answer>

Llama-4-Maverick-17B 46

To determine how many times UMD Offense transitioned from UNC Offense, we need to examine
the node-link diagram closely.
1. **Identify Relevant Elements**: The relevant elements in this visualization are the nodes
labeled "UNC Offense" and "UMD Offense" and the links connecting them or leading to "UMD
Offense".
2. **Understand the Diagram**: The diagram shows sequences of events with directed links
indicating the flow from one event to another. The width of the links and the numeric labels next
to them represent the count of sequences following that path.
3. **Analyze the Links**: - The node "UNC Offense" has two outgoing links, one leading
to "Made Shot" and the other to "Missed Shot". - The counts for these links are 22 and 24,
respectively.
4. **Transition to UMD Offense**: - "Made Shot" has a link to "UMD Offense" with a count of
22. - "Missed Shot" also has a link to "UMD Offense" with a count of 24.
5. **Calculate Total Transitions to UMD Offense from UNC Offense**: To find the total number
of times UMD Offense transitioned from UNC Offense, we need to sum the counts of sequences
that went from "UNC Offense" to "UMD Offense". This involves adding the counts of the paths
"UNC Offense" -> "Made Shot" -> "UMD Offense" and "UNC Offense" -> "Missed Shot" ->
"UMD Offense".
6. **Perform Calculation**: - Count via "Made Shot": 22 - Count via "Missed Shot": 24 - Total
Count = 22 + 24 = 46
<reasoning> The total number of times UMD Offense transitioned from UNC Offense is calculated
by summing the counts of the two paths leading from "UNC Offense" to "UMD Offense", which
are through "Made Shot" and "Missed Shot". The count through "Made Shot" is 22, and through
"Missed Shot" is 24. Thus, the total count is 22 + 24 = 46. </reasoning>
<answer>46</answer>

Llama-4-Scout-17B 46

Step 1: Identify the relevant elements in the visualization The node-link diagram shows the
following elements: - A starting point labeled "_Start" with 69 sequences leading to "UNC
Offense". - "UNC Offense" has two paths: one with 22 sequences leading to "Made Shot" and
another with 24 sequences leading to "Missed Shot". - "Made Shot" and "Missed Shot" both lead
to "UMD Offense". - "UMD Offense" has two paths: one with 34 sequences leading to "Rebound"
and another with 22 sequences leading to "_Exit".
2: Determine the transition from UNC Offense to UMD Offense To find out how many times
UMD Offense transitioned from UNC Offense, we need to look at the paths leading from "UNC
Offense" to "UMD Offense". However, the direct link counts from "UNC Offense" to "UMD
Offense" are not explicitly shown, but we can infer the total transitions to "UMD Offense" by
looking at the counts leading into "UMD Offense".
3: Calculate the total transitions to UMD Offense The total transitions to "UMD Offense" can
be determined by adding the sequences from "Made Shot" and "Missed Shot" since both lead to
"UMD Offense". - From "Made Shot" to "UMD Offense", there are 22 sequences. - From "Missed
Shot" to "UMD Offense", there are 24 sequences.
4: Sum the sequences leading to UMD Offense Total sequences leading to "UMD Offense" =
22 (from "Made Shot") + 24 (from "Missed Shot") = 46 sequences.
5: Provide the final answer Given that 46 sequences lead to "UMD Offense" from either "Made
Shot" or "Missed Shot", this directly implies that UMD Offense transitioned 46 times from UNC
Offense, as these are the only paths shown leading into UMD Offense.
<reasoning> To determine how many times UMD Offense transitioned from UNC Offense, we
look at the paths from UNC Offense to UMD Offense. The paths are as follows: - Made Shot: 22
sequences - Missed Shot: 24 sequences So, UMD Offense transitioned 22 + 24 = 46 times from
UNC Offense. </reasoning>
<answer>46</answer>

Table G.4: Sample VLM Responses for value aggregation task on graph, provided in fig. D.2. Correct Answer: 69

Model LLM Answer Reasoning

Llama-3.2-90B-Vision

Step 1: Identify the relevant elements in the visualization.
* The node "UNC Offense" has two outgoing links, one labeled "Made Shot" and the other labeled
"Missed Shot". * The node "UMD Offense" has one incoming link from the node "Rebound".
Step 2: Describe the thought process and calculations clearly step-by-step.
* To determine how many times UMD Offense transitioned from UNC Offense, we need to count
the number of sequences that follow the path from UNC Offense to UMD Offense. * The link
from UNC Offense to Made Shot has a count of 22, and the link from UNC Offense to Missed
Shot has a count of 24. * Since there is no direct link from UNC Offense to UMD Offense, we
need to consider the indirect paths through Rebound. * The link from Rebound to UMD Offense
has a count of 34, but this includes sequences that may not have originated from UNC Offense. *
To find the number of sequences that transitioned from UNC Offense to UMD Offense, we need to
subtract the count of sequences that did not originate from UNC Offense from the total count of
sequences that reached UMD Offense.
Step 3: Provide the final answer.
* Unfortunately, the provided information does not allow us to determine the exact number of
times UMD Offense transitioned from UNC Offense, as we cannot accurately calculate the number
of sequences that did not originate from UNC Offense.
Answer: indeterminate

Llama-3.2-11B-Vision 2

Step 1: Identify the relevant elements in the visualization that inform the answer.
The node-link diagram shows the sequence of events between different offenses. The relevant
elements for this question are the nodes labeled "UNC Offense" and "UMD Offense," as well as
the links connecting them.
Step 2: Describe the thought process and calculations in XML tags.
<reasoning>
To determine how many times UMD Offense transitioned from UNC Offense, we need to examine
the links between these two nodes.
* There are two links connecting UNC Offense to UMD Offense. * Each link represents a transition
from UNC Offense to UMD Offense.
Therefore, UMD Offense transitioned from UNC Offense twice.
</reasoning>
**Step 3: Provide the final answer in the format <answer>X</answer> where X is the direct
answer or ’indeterminate’.**
<answer>2</answer>

Qwen-VL-Plus 34

<answer>34</answer>
<reasoning> To determine how many times UMD Offense transitioned from UNC Offense, we
need to follow the pathway from UNC Offense to UMD Offense in the diagram.
1. Start at the node labeled "UNC Offense." 2. Follow the directed link labeled "24" leading to the
node labeled "Made Shot." 3. From "Made Shot," there is a link labeled "22" pointing to "UMD
Offense."
The link from "UNC Offense" to "Made Shot" has a label of 24, and the link from "Made Shot" to
"UMD Offense" has a label of 22. Therefore, the total number of transitions from UNC Offense to
UMD Offense is the sum of these two labels: 24 + 22 = 46.
However, it seems there might be an error in the provided answer as the correct calculation based
on the diagram should be 34 (from the "UMD Offense" node). Thus, the correct answer is 34.
</reasoning>

Qwen-VL-Max 46

To determine how many times UMD Offense transitioned from UNC Offense, we need to follow
the pathways in the diagram:
1. Start at the "UNC Offense" node. 2. Look for links leading out of this node. 3. There are two
links: one labeled "22" leading to "Made Shot" and another labeled "24" leading to "Missed Shot".
4. From both "Made Shot" and "Missed Shot", there are links leading to "UMD Offense". 5. The
link from "Made Shot" to "UMD Offense" is labeled "22". 6. The link from "Missed Shot" to
"UMD Offense" is labeled "24".
Adding these values together gives us the total number of transitions from UNC Offense to UMD
Offense: <reasoning> The link from "Made Shot" to "UMD Offense" has a value of 22. The link
from "Missed Shot" to "UMD Offense" has a value of 24. Therefore, the total number of transitions
from UNC Offense to UMD Offense is 22 + 24 = 46. </reasoning> <answer>46</answer>

Table G.5: Sample VLM Responses for value aggregation task on graph, provided in fig. D.2. Correct Answer: 69

Model LLM Answer Reasoning

QVQ-Max indeterminate

<reasoning> Okay, let’s try to figure out how many times UMD Offense transitioned from UNC
Offense based on the diagram provided.
First, I need to understand the structure of the diagram. The nodes represent events, and the directed
links show the transitions between these events. The vertical position indicates the chronological
order, so the top node is the starting point, and it goes down from there. The link widths and the
numbers next to them indicate the number of sequences that follow that path.
Looking at the nodes, there’s a starting point labeled "_Start" at the top. From there, there’s a
link to "UNC Offense" with the number 69. That means 69 sequences started with UNC Offense.
Then, from UNC Offense, there are two outgoing links: one to "Made Shot" with 22 and another
to "Missed Shot" with 24. So, after UNC Offense, 22 times they made a shot, and 24 times they
missed.
Next, the "Made Shot" node has a link to "Rebound" with 22, and "Missed Shot" also links to
"Rebound" with 24. Then, from "Rebound," there’s a link to "UMD Offense" with 34 and another
to "_Exit" with 22. Finally, UMD Offense has a link to "_Exit" with 24.
The question is asking how many times UMD Offense transitioned from UNC Offense. Wait, but
looking at the diagram, the direct transition from UNC Offense is to Made Shot or Missed Shot,
not directly to UMD Offense. So maybe the path is UNC Offense -> Missed Shot -> Rebound ->
UMD Offense?
Let me trace the possible pathways. Starting from UNC Offense (69 instances), 24 of those go to
Missed Shot. From Missed Shot (24), all of them go to Rebound (24). Then, from Rebound, 34
go to UMD Offense. But wait, the link from Rebound to UMD Offense is 34. However, the total
coming into Rebound is 22 (from Made Shot) + 24 (from Missed Shot) = 46. But the link from
Rebound to UMD Offense is 34, and to _Exit is 22. That adds up to 56, which is more than 46.
That seems inconsistent. Hmm, maybe I’m misunderstanding the numbers.
Wait, the numbers on the links represent the count of sequences following that path. So from
Rebound, 34 go to UMD Offense and 22 to _Exit. But the total coming into Rebound is 22 (from
Made Shot) + 24 (from Missed Shot) = 46. But 34 + 22 = 56. That doesn’t add up. There’s a
discrepancy here. Maybe the numbers on the links are not the counts but something else? Or
perhaps the diagram is showing cumulative counts? Wait, the instruction says "Link widths are
proportional to the number of sequences following that path. Numeric labels next to each link
show the exact count of sequences." So the numbers should be the exact counts. But then, how
does 22 + 24 = 46 incoming to Rebound result in 34 + 22 = 56 outgoing? That’s impossible. There
must be an error here, but since I have to answer based solely on the visualization, maybe I’m
misinterpreting the flow.
Alternatively, perhaps the link from Rebound to UMD Offense is 34, which would mean that out
of the 46 sequences that reached Rebound, 34 went to UMD Offense and 22 exited. But 34 +22 is
56, which is more than 46. That can’t be. Therefore, this suggests that the numbers might not be
additive in the way I think. Maybe the links from Rebound are separate paths. Wait, perhaps the
Rebound node has two outgoing links: one to UMD Offense (34) and one to _Exit (22). But the
total number of sequences leaving Rebound should equal the number coming in. Since 22 +24 =46
come into Rebound, then the outgoing links should sum to 46. But 34 +22=56. This is a problem.
Unless the numbers are not the counts but something else. But the instructions say they are the
exact count.
This inconsistency might be a mistake in the diagram, but since I have to work with what’s given,
perhaps I need to proceed differently. The question is about transitions from UNC Offense to UMD
Offense. Looking at the diagram, there’s no direct link from UNC Offense to UMD Offense. The
path would have to go through Missed Shot and Rebound. So the number of times UMD Offense
transitions from UNC Offense would be the number of sequences that go from UNC Offense to
Missed Shot to Rebound to UMD Offense.
So starting from UNC Offense, 24 go to Missed Shot. From Missed Shot, all 24 go to Rebound.
From Rebound, 34 go to UMD Offense. But wait, if 24 sequences are coming from Missed Shot
to Rebound, and then 34 go from Rebound to UMD Offense, how can 34 be more than 24? That
would imply that some sequences from other paths (like Made Shot) are also contributing. But
Made Shot sends 22 to Rebound. So total Rebound is 22 +24=46. Then, from Rebound, 34 go
to UMD Offense. So the 34 includes sequences from both Made Shot and Missed Shot. But the
question is specifically about transitions from UNC Offense to UMD Offense. Since UNC Offense
leads to Missed Shot (24) which leads to Rebound (24), and then from Rebound, 34 go to UMD
Offense. But how many of those 34 are from the original 24 that came through Missed Shot?

Continued.....

</reasoning>
<answer>indeterminate</answer>

Table G.6: Sample VLM Responses for value aggregation task on graph, provided in fig. D.2. Correct Answer: 69

Model LLM Answer Reasoning

Qwen2.5-VL-72B 46

1. **Relevant Elements:** The node "UNC Offense" is connected to two nodes: "Made Shot"
and "Missed Shot." The node "UMD Offense" is connected from both "Made Shot" and "Missed
Shot." The link widths and numeric labels indicate the number of sequences.
2. **Reasoning:** From "UNC Offense," there are 22 sequences leading to "Made Shot" and 24
sequences leading to "Missed Shot." All sequences from "Made Shot" (22) and "Missed Shot"
(24) transition to "UMD Offense." Therefore, the total number of transitions from "UNC Offense"
to "UMD Offense" is the sum of these sequences. Calculation: 22 + 24 = 46
3. **Final Answer:** <answer>46</answer>

Qwen2.5-VL-32B 24

To answer the question, let’s carefully analyze the node-link diagram step by step:
1. Identify Relevant Elements - The **UNC Offense** node has two outgoing links: - One
leading to **Made Shot** with a count of 22. - One leading to **Missed Shot** with a count of
24. - The **Missed Shot** node has an outgoing link to **UMD Offense** with a count of 24.
2. Understand the Transition The question asks how many times **UMD Offense** transi-
tioned from **UNC Offense**. This means we need to trace the pathway from **UNC Offense**
to **UMD Offense**.
- From **UNC Offense**, there is a direct path to **Missed Shot** (count = 24). - From **Missed
Shot**, there is a direct path to **UMD Offense** (count = 24).
Since the link from **Missed Shot** to **UMD Offense** has a count of 24, this indicates that
24 sequences transitioned from **UNC Offense** to **UMD Offense** via the **Missed Shot**
event.
3. Verify and Conclude There are no other pathways from **UNC Offense** to **UMD
Offense** in the diagram. The only valid transition is through the **Missed Shot** event, which
has a count of 24.
Final Answer <answer>24</answer>

Qwen2.5-VL-7B 22

###Relevant Elements: - The node labeled "UNC Offense" is at the top of the diagram. - The node
labeled "UMD Offense" is below it. - There is a link between "UNC Offense" and "UMD Offense"
with a label of 22.
Reasoning: 1. The link between "UNC Offense" and "UMD Offense" represents a transition
from one team’s offense to the other. 2. The label on this link, which is 22, indicates the number of
times this transition occurred.
Final Answer: <answer>22</answer>

Table G.7: Sample VLM Responses for value aggregation task on graph, provided in fig. D.2. Correct Answer: 69

	Introduction
	ProcVQA Benchmark
	Chart Corpus
	 Task Design

	Findings
	Conclusion
	Limitations
	ProcVQA: Curation, Generation, Visualization Types and Mining Algorithms
	Process Dataset Curation
	Process Mining Algorithms
	Visualization Types
	Visualization and Ground Truth Generation

	Evaluation Setup
	Evaluation Protocol
	Task Metrics
	VDE
	VQA

	Model Selection
	Closed-Source Models
	Open-Source Models

	ProcVQA in the Context of Previous Benchmarks
	Prompt Templates for VQA & VDE Tasks
	Results
	VDE Task results
	VQA Task results

	Human-VLM Performance Comparison
	Failure Mode Analysis
	Case Study: Value Aggregation Task
	Case Study: Hallucination
	Case Study: Instruction-Following Failures

	Computational Experiments
	Model Parameters, Computational Budget, and Infrastructure
	Experimental Setup and Hyperparameters
	Packages

	Use of AI Assistants
	License

