TutoAI: a Cross-domain Framework for AI-assisted Mixed-media Tutorial Creation on Physical Tasks

Yuexi Chen¹, Vlad Morariu², Anh Truong², Zhicheng Liu¹

¹University of Maryland, College Park ² Adobe Research

Contact: ychen151@umd.edu

How-to videos are popular

How-to videos are popular

How-to videos earn the **most attention** of any content category on YouTube, even more than music clips or gaming

Think with Google

Google/Ipsos, U.S., Video Mobile Diary (n of 18,219 total video occasions), 2017.

How-to videos are popular

Make pancakes

Apply makeup

Repair cars

Pain points of watching how-to videos

Lack of information overview

Timeline scrubbing is imprecise & tedious

Liu et al. ConceptScape: Collaborative concept mapping for video learning. CHI'18; Yang et al. Improving Video Interfaces by Presenting Informational Units of Videos. CHI EA'22

Truong et al. Automatic generation of two-level hierarchical tutorials from instructional makeup videos. CHI'21; Nawhal et al. VideoWhiz: Non-Linear Interactive Overviews for Recipe Videos. GI'19

Video Section

Liu et al. ConceptScape: Collaborative concept mapping fo

Control Section				
Actions				
TOTAL	0:00-8:09			
tool (stock) (onions third) (bow) (tongs) (tin foil) (tortila) (dish) (try	pan			
(cheese (blue cheese) (cheese (mozzarella) (salad) (butter) (wooden spoon	spoon			
(yogurt) (knile) (onions) (brush) (tablespoon) (cutting board) (wrap) (griddle	e) plate			
$\left(mixed spinach, rocket and pea shoots \right) \left(fork \right) \left(seasoning \right) \left(cheese \right)$				
introducing recipe	0.09-0.50			
introducing ingredients	0.55-120			
heat up pan	121-128			
seasoning steak	125-141			
roast steak	1.42-4.10			
fry onions	158-4:00			
move onions to tinfoil	4:00-4:09			
move steak to tinfoil	435-432			
put cheese on the steak	426-433			
slice steak with cheese	4.47.511			

9

Auto-generated mixed-media tutorials are of low-quality

Search

Q

tps://www.youtube.com/watch?y=9i45Hrg57Wo

Creating high-quality tutorials require domain knowledge

For makeup tutorials, cluster steps by facial parts

EYES

25. I'm going to use this browsing my benefit. And I'm ...

LIPS

26. I'm going to take lip land cream corset by Samantha. And ...

AI presents opportunities to create cross-domain tutorials

Challenges for AI-assisted cross-domain tutorial creation

Input: video, transcript **Output:** mixed-media tutorials (videos, images, text, diagrams)

Challenges for AI-assisted cross-domain tutorial creation

Input: video, transcript Output: mixed-media tutorials (videos, images, text, diagrams)

Challenges:

- Vast model space: multiple models are required and applicable
- **Inaccurate results:** models may make errors

Challenges for AI-assisted cross-domain tutorial creation

Input: video, transcript Output: mixed-media tutorials (videos, images, text, diagrams)

Challenges:

- Vast model space: multiple models are required and applicable
- Inaccurate results: models may make errors

Research questions:

- How to **identify, evaluate,** and **select** models to create crossdomain mixed-media tutorials?
- How to design **user interfaces** to refine AI-generated mixed-media tutorials?

Components	Steps text, video frames, timestamps	

24. I'm gonna take my favorite blush captivating by tarped.

Components	Steps text, video frames, timestamps		Objects text labels, image	×
------------	---	--	-------------------------------	---

Things You'll Need

	Hose
~	Roof cement
	Chisel
	Hammer

Components	Steps text, video frames, timestamps		Objects text labels, image	X	Dependencies temporal order, spatial order	
------------	---	--	-------------------------------	---	---	--

Examples:

1000	24. I'm gonna take my favorite blush	
100	captivating by tarped.	

Components	Steps text, video frames, timestamps	Objects text labels, image	Dependencies temporal order, spatial order
Models identify applicable models	Predict step boundaries shot boundary detection, NLVL, video summarization, LLM	Extract objects from transcript POS tagging, LLM	Match objects to steps string match
	Generate text summary extractive & abstractive summarization, dense captioning	Locate objects in frame object detectors	Build directed acyclic graph connect steps with shared objects

Components	Steps text, video frames, timestamps	Objects text labels, image	Dependencies temporal order, spatial order
Models identify applicable models	Predict step boundaries shot boundary detection, NLVL, video summarization, LLM	Extract objects from transcript POS tagging, LLM	Match objects to steps string match
	Generate text summary extractive & abstractive summarization, dense captioning	Locate objects in frame object detectors	Build directed acyclic graph connect steps with shared objects
assemble candidate pipelines	Step pipelines 1 2 3 4	Object pipelines 1 2 3	Dependency parser
evaluate models & pipelines	Objective metrics F1 score, ROUGE, temporal interse		c considerations

Components	Steps text, video frames, timestamps	Objects text labels, image	Dependencies
Models identify applicable models	Predict step boundaries shot boundary detection, NLVL, video summarization, LLM	Extract objects from transcript POS tagging, LLM	Match objects to steps string match
	Generate text summary extractive & abstractive summarization, dense captioning	Locate objects in frame object detectors	Build directed acyclic graph connect steps with shared objects
assemble candidate pipelines	Step pipelines 1 2 3 4	Object pipelines 1 2 3	Dependency parser
evaluate models & pipelines	Objective metrics F1 score, ROUGE, temporal inters		c considerations
User Interfaces			
separate content from style guided component editing	Add missing information add missing steps, objects, depend	encies revise text descriptions, object	t bounding boxes, dependencies

Components	Steps text, video frames, timestamps	Objects text labels, image	Dependencies temporal order, spatial order
Models identify applicable models	Predict step boundaries shot boundary detection, NLVL, video summarization, LLM	Extract objects from transcript POS tagging, LLM	Match objects to steps string match
	Generate text summary extractive & abstractive summarization, dense captioning	Locate objects in frame object detectors	Build directed acyclic graph connect steps with shared objects
assemble candidate pipelines	Step pipelines 1 2 3 4	Object pipelines 1 2 3	Dependency parser
evaluate models & pipelines	Objective metrics F1 score, ROUGE, temporal inters		c considerations
User Interfaces			
separate content from style guided component editing	Add missing information add missing steps, objects, depend	encies Revise model results revise text descriptions, object	t bounding boxes, dependencies

An object component example: "chicken breast"

"...here are the ingredients...this is the boneless skinless chicken breast thinly slice like this..."

https://youtu.be/ntiGX3X-spA

An object component example: "chicken breast"

"...here are the ingredients...this is the boneless skinless **chicken breast** thinly slice like this..."

How to extract "chicken breast" from text and images?

https://youtu.be/ntiGX3X-spA

Candidate ML pipelines for object extraction

Pipeline #1: general object detectors

Candidate ML pipelines for object extraction

Pipeline #2: part-of-speech tagging

input: "...here are the ingredients...this is the boneless skinless chicken breast thinly slice like this..."

Output (only keep nouns): "ingredients", "chicken", "breast"

https://github.com/flairNLP/flair

Candidate ML pipelines for object extraction

Pipeline #3: large language model (LLM) prompting

Input: the entire transcript

Prompt: "Identify the ingredients in this tutorial"

Output: "Boneless skinless chicken breast", ...

Pipeline #3: detect objects given text labels

Radford et al. "Learning transferable visual models from natural language supervision." ICML 2021

Pipeline #3: open-vocabulary object detection

Labels extracted by LLM:

- Boneless skinless chicken breast
- Chopped green pepper
- Roasted peanuts
- Red chili
- Green onions

Li et al. "Grounded language-image pre-training." CVPR 2022

Candidate ML pipelines for step extraction

Step extraction

Evaluation: a large-scale cooking video dataset

Dataset:

20 diverse instructional videos (crafting, makeup, repair)
Evaluation: a large-scale cooking video dataset

Dataset:

□ 347 annotated cooking videos

□ 20 diverse instructional videos (crafting, makeup, repair)

Metrics:

- □ Objective:
 - □ F1 scores
 - □ ROUGE scores
 - □ Temporal Intersection over Union (tIOU)
- □ Subjective:
 - □ correction efforts required from humans

IDENTIFY STEPS > CHOOSE THUMBNAILS > SELECT OBJECTS > CROP OBJECTS > BUILD DEPENDENCIES

 \sim

00:01 - 00:19	Introduction to the project and purpose of creating a bumblebee seesaw	8
00:20 - 01:22	Gathering materials including a used tire and plywood board	
01:33 - 02:54	Measuring and marking the board for the curved seating areas	
02:55 - 03:38	Cutting and sanding the board] 🚫
03:39 - 06:31	Painting the board with black and yellow stripes using painter's tape	
06:32 - 08:02	Cutting the tire in half and priming and painting it with black and yellow stripes	
08:03 - 09:06	Creating wood blocks to attach the tire to the board	
09:07 - 10:46	Attaching the tire and handles to the board] 🚫
	 -	۹ (

Instructions

TutoAI vs. YouTube Chapters

TutoAI components received higher ratings than **YouTube** Chapters (**N=12**)

Component quality **before editing**

Component usefulness after editing

YouTuber's testimonial

"I think this is a great tool. I like this a lot...this is giving me the ability to do a lot more, especially creating the **flow charts** ...viewers would get a lot out of this as opposed to just a regular chapter..."

SevenFortyOne Radios and Repairs

SevenFortyOne · 43.1K subscribers · 590 videor

Iam Radio demonstration and repair with some Chevy Suburban and home repairs mixed i... 🔉

witter.com/SevenFortyOneB and 1 more link

Adopt a multi-modal perspective

INITIALLY ————

Adopt a multi-modal perspective

INITIALLY ————

Simplify complex creation by guiding and constraining user actions

Separate content from styles

8 DURING INTERACTION ———

Adopt a multi-modal perspective

INITIALLY ————

Focus on user-centric model selection

Support graceful degradation

▲ WHEN WRONG -

Simplify complex creation by guiding and constraining user actions

Separate content from styles

8 DURING INTERACTION ————

Adopt a multi-modal perspective

INITIALLY ————

Focus on user-centric model selection

Support graceful degradation

A WHEN WRONG

Simplify complex creation by guiding and constraining user actions

Separate content from styles

8 DURING INTERACTION ————

Leverage strong models for cross-modal enhancement

© OVER TIME ------

Limitations and future work

Object

Chang et al. "Rubyslippers: Supporting content-based voice navigation for how-to videos." CHI 2021.

Limitations and future work

Chang et al. "Rubyslippers: Supporting content-based voice navigation for how-to videos." CHI 2021.

Acknowledgment

Vlad I Morariu@Adobe

Anh Truong@Adobe

Leo Zhicheng Liu@Univ of Maryland